
微访谈 ▏CDA考试是我真正进入数据分析领域的敲门砖
考试状元榜眼以及探花等优等生从小到大从来都是备受推崇的一群人,他们的笔记和经验在很多人眼中更是很多人可遇而不可求的。而他们的很多方法往往是下届学子们复习的方法,今天C君特意拜访了第六届CDA认证考试各位优秀学员的考试经验,并整理后分享给大家,以供学弟学妹们参考并能取得更好的学习经验。
李*灿
LEVEL 1 业务数据分析师状元
本科就读于安徽财经大学统数学院信息与计算科学方向;硕士就读于合肥工业大学经济学院统计学,目前为在读研究生。
如何更高效的复习CDA考试?
报考CDA的原因是想要系统地学习数据分析的基础知识(本身统计学,但觉得学的不够扎实),更重要的原因是想未来可以进一步的发展,学习更多的数据分析方面的东西,我觉得经管之家(原人大经济论坛)是一个非常值得信任的平台,事实上,我在这里真的学到了很多知识,这种体系也越来越清晰。
给学弟学妹们的建议是,在学习的过程中及时去整理思路,反复在脑子里构建一个框架,对于知识点的把握非常有益。然后就是书还是要多看几遍的,每一遍都有不一样的收获!
汪*静
LEVEL 1 业务数据分析师状元
毕业于南京一所财经类学校,专业是金融学。至今毕业已有4个年头了,从事的一直是数据分析工作。刚毕业时进入一家金融数据分析公司,入门数据分析。
工作两年后,进入房地产事业单位,做的是后台各系统房地产数据的整合和分析。现在就职于省住建厅,做省级房地产市场数据的分析工作。
如何更高效的复习CDA考试?
我想把数据分析往更深入方向学习,可能我很难成为大数据分析师,使用hadoop这些,但是从统计学到机器语言却是我可以掌握的。人的想法可能随时在变,具体发展规划得一步一步实践出来,但我很肯定我希望能在这个领域中有所学有所专。
给学弟学妹的建议是:CDA一级考试不难,只要掌握考纲和书本内容基本都不会有大问题。事实上我没有把CDA考试作为单纯一门考试,而是我真正进入数据分析领域的一个敲门砖,它是帮助我建立数据分析架构的。在准备考试之前我看过很多数据分析案例和分析框架的书,这也让我准备考试过程很轻松。很感谢这门考试,可能很多人看来一级基本都是选择判断题型,没有大挑战可言。但其实它的考试内容设置很棒,是能够帮助搭建数据分析框架的。
张*坤
LEVEL 1 业务数据分析师榜眼
2013年毕业于大连某高校,毕业后就职于政府机关,工作内容类似于人事管理,职位为助理。2016年考研,今年9月份开始读研。
如何更高效的复习CDA考试?
我的工作和数据分析并无关联,学习数据分析是兴趣使然。几年之前我想到一个问题,就是如果把一篇英文文章中的标点去掉,统一大小写,能不能发明一个算法,通过学习其他文章的语法规则,把纯由字母串组成的数据还原成文章?至少可以预测当前位置下一位的字母是什么?我自己尝试了很多算法,清楚的记得,一开始随机预测准确度是0.23,后来通过利用字母的分布,字母的前后关系等信息,使预测准确度提高到0.35,虽然进步不大,但是让我感到了数据分析的威力。在那之后很长时间都对机器学习、人工智能等学科比较感兴趣,并且自学了相关的课程。
给学弟学妹的建议:其实我也挺懒,但是一想到1000元钱的报名费,我就来了劲头(手动滑稽)。
1、正经的说,首先肯定是把书从头到尾看两遍,并且把spss、sas、数据资料准备好,按照书中说的操作一遍,这样印象深刻。
2、然后是看考试大纲,有些知识点分值高就重点看,比如主成分分析,对应分析等,书上看不懂就网上查资料,理论大致了解就行,重点是应用,学有余力理论也要搞清楚。其实我觉得书的作用就是大纲,能把学习框架画出来,这是CDA最大的作用,由于数据分析是交叉学科,内容比较繁杂,深入学习还得靠自己查资料。
3、最后就是做题了,书后的练习题都要搞明白,官网上的模拟题也要做,然后根据模拟题在百度上搜类似的题。另外希望书后的题能有一个简单的解释,像我这种自学的真是没有地方问老师。
杨*琴
LEVEL 2 业务数据分析师榜眼
2010-2015年在法国读本科和硕士,专业是计量经济与统计
2015-2016年在一家法国咨询公司工作,担任Data mining和BI工程师2016至今在德勤风险咨询担任分析师
如何更高效的复习CDA考试?
在数据分析这个领域,首先是不断提升知识技能和方法,通过工作实践,了解不同行业需求,同时结合自己掌握的知识和经验,用数据分析帮助企业解决问题。逐步培养自己成为一名真正的数据科学家。
给学弟学妹的建议:
1、合理系统安排复习时间,尽量保证每天都要看书;
2、着重理解和运用每个知识点,使所学内容融会贯通,使知识系统化,对问题的理解更深刻。
如何报考CDA认证考试?
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08