
这7个不可错过的数据可视化技术,让你的位置信息跃然纸上
研究人员们对于数据做了精心的分析处理后,一定想用生动形象的方式将自己辛苦挖掘出的数据呈现大家。好的可视化方法可以让数据为读者讲述出十分有趣的故事,直观的呈现也为数据消费者提供了高效的信息和决策的坚实依据。那么这7个可视化技术你一定不能错过~
Choropleths
如果你想要呈现基于地域的数据信息,那么choropleth一定是你的不二选择。通过对于不同区域对应的数值着色,可以十分方便的呈现出某一数据在不同地区的数值和差异,上图的例子显示美国的失业率分布。我们可以利用这个工具对不同国家、市镇、乡村、市场区域甚至邮编表示的区域来呈现数据分布。
Graduated Circles
利用这一工具我们可以在一张图上呈现出多个不同维度的信息,就像上图所示的例子,可以利用圆圈的大小来表示数量,颜色来表示范围,位置来描述各个数据源之间的空间趋势。这种图在描述某种变量的分布时十分有用,例如对于某一人群的分布、某些疾病数据的呈现等都十分直观。
Dot Distributions
这一工具用来描述十分密集的数据点。可以通过图中数据点的密度直观的获取对应数据的地理分布和强度。例如交通、互联网流量、社交媒体的点击量等,都可以用这种方式呈现出来。
Animations
比起固定的图片形式,我们更爱看动画和视频呈现出的数据。这其中主要的原因是动画中包含的数据变动的时序信息,使得我们可以根据数据随时间的变化更好的把握事物运动变化发展的规律。这种工具最适合用于呈现交通流、人流信息的变化,甚至可以用来描述一个国家和地区的收入状况、就业率、水电消耗等随时间的变化。
3D Extrusions
除了平面的数据,我们还能利用三维空间呈现出数据更加迷人的一面。利用高度来表示不同地区数据的数量、强度,可以直观的感受到不同地区间的差异。例如经济发展和人口分布、GDP等。如果你看过全球经济发展数据的话,你一定会感叹于美国发达的经济摩天大楼和第三世界低矮的经济平房间巨大的差距。
3D Environments
我们有了数据,为什么不通过另一中更为有趣的方式来探索数据呢?利用Unity的游戏引擎,我们可以将获取的数据呈现在虚拟世界甚至是增强现实中去,就像游戏一样去更直观的探索和感受数据。这也许将成为可视化的下一次革命。
Heatmaps
相信很多朋友都用过地图中的热力图功能来避开拥堵和人山人海的假期景点。热力图利用颜色梯度来表示某个量的分布情况。我们利用它可以方便的得到数据间联系的数据内部的分布关系。出行网站和城市管理部门以及在大范围应用热力图进行数据的呈现并提供有效的决策信息。
数据就像文字一样拥有无穷的魅力,它其中包含了太多的故事。选择一中好的方法来呈现数据,将会为你打开一扇扇神奇的大门。数据可视化是数据工程的一项重要内容,希望我们都能有效利用可视化工具从中感受到数据的魔力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29