默认的环境是 root,你也可以创建一个新环境:
conda create -n env_name list of packages
其中 -n 代表 name,env_name 是需要创建的环境名称,list of packages 则是列出在新环境中需要安装的工具包。
例如,当我安装了 Python3 版本的 Anaconda 后,默认的 root 环境自然是 Python3,但是我还需要创建一个 Python 2 的环境来运行旧版本的 Python 代码,最好还安装了 pandas 包,于是我们运行以下命令来创建:
conda create -n py2 python=2.7 pandas
细心的你一定会发现,py2 环境中不仅安装了 pandas,还安装了 numpy 等一系列 packages,这就是使用 conda 的方便之处,它会自动为你安装相应的依赖包,而不需要你一个个手动安装。
进入名为 env_name 的环境:
source activate env_name
退出当前环境:
source deactivate
另外注意,在 Windows 系统中,使用 activate env_name 和 deactivate 来进入和退出某个环境。
删除名为 env_name 的环境:
conda env remove -n env_name
显示所有的环境:
conda env list
当分享代码的时候,同时也需要将运行环境分享给大家,执行如下命令可以将当前环境下的 package 信息存入名为 environment 的 YAML 文件中。
conda env export > environment.yaml
同样,当执行他人的代码时,也需要配置相应的环境。这时你可以用对方分享的 YAML 文件来创建一摸一样的运行环境。
conda env create -f environment.yaml








暂无数据