2019-03-13
阅读量:
566
pandas合并数据
> plyr::join(data1,data2)
Joining by: id, city, nationality
id city nationality Count Area
1 1 GZ CN 100 3
2 2 ZZ CN 30 5
3 3 BJ CN 20 NA
4 4 Newyork US 40 3
5 5 London BR 50 NA
> plyr::join(data1,data2, type = 'left', match = 'first')
Joining by: id, city, nationality
id city nationality Count Area
1 1 GZ CN 100 3
2 2 ZZ CN 30 5
3 3 BJ CN 20 NA
4 4 Newyork US 40 3
5 5 London BR 50 NA
> plyr::join(data1,data2, type = 'inner')
Joining by: id, city, nationality
id city nationality Count Area
1 1 GZ CN 100 3
2 2 ZZ CN 30 5
3 4 Newyork US 40 3
> plyr::join(data1,data2, type = 'right')
Joining by: id, city, nationality
id city nationality Count Area
1 1 GZ CN 100 3
2 2 ZZ CN 30 5
3 3 SH CN NA 7
4 4 Newyork US 40 3
5 5 Paris Fr NA 2
> plyr::join(data1,data2, type = 'full',by='city')
id city nationality Count Area
1 1 GZ CN 100 3
2 2 ZZ CN 30 5
3 3 BJ CN 20 NA
4 4 Newyork US 40 3
5 5 London BR 50 NA
6 3 SH CN NA 7
7 5 Paris Fr NA 2
> plyr::join(data1,data2, type = 'inner',by='city')
id city nationality Count id nationality Area
1 1 GZ CN 100 1 CN 3
2 2 ZZ CN 30 2 CN 5
3 4 Newyork US 40 4 US 3






评论(0)


暂无数据