Kendall秩相关以Maurice Kendall命名。它也被称为Kendall相关系数,通常用小写希腊字母tau(t)表示。所以,它也被称为Kendall’s tau。这种检验是计算两个样本之间匹配或一致排名的标准化分数。因此,也称为Kendall’s concordance test。在Python中,Kendall秩相关系数可以使用SciPy函数kendalltau()计算。它将两个数据样本作为参数,并返回相关系数和p值。作为统计假设检验,该方法假设(H0)两个样本之间没有关联。我们可以在测试数据集上演示计算结果,我们预计会报告强正相关。下面列出了完整的示例:
from numpy.random import rand
from numpy.random import seed
from scipy.stats import kendalltau
# seed random number generator
seed(1)
# prepare data
data1 = data['x']
data2 = data['price']
# calculate kendall's correlation
coef, p = kendalltau(data1, data2)
print('Kendall correlation coefficient: %.3f' % coef)
# interpret the significance
alpha = 0.05
if p > alpha:
print('Samples are uncorrelated (fail to reject H0) p=%.3f' % p)
else:
print('Samples are correlated (reject H0) p=%.3f' % p)
Kendall correlation coefficient: 0.831
Samples are correlated (reject H0) p=0.000
运行该示例,Kendall相关系数为 0.8,这是高度相关。与Spearman一样,p值接近零(打印为零),这意味着我们可以放心地驳回样本不相关的零假设。








暂无数据