
2020-08-27
作者:刘早起
来源:早起Python
大家好,这篇是接上篇《numpy学得还不错?来试试这20题(上)》,又到了numpy进阶修炼专题。numpy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将将接下来的10个NumPy经典问题和实用代码附上,建议打开Jupyter Notebook边敲边看!
11数据修改
问:如何对数据向上/下取整
输入:
arr = np.random.uniform(0,10,10)
答案:
arr = np.random.uniform(0,10,10)
print(arr)
###向上取整
print(np.ceil(arr))
###向下取整
print(np.floor(arr) )
12格式修改
问:如何取消默认科学计数显示数据
答案:
np.set_printoptions(suppress=True)
13数据修改
问:如何使用NumPy对二维数组逆序
输入:
arr = np.random.randint(1,10,[3,3])
答案:
arr = np.random.randint(1,10,[3,3])
print(arr)
print('列逆序')
print(arr[:, -1::-1])
print('行逆序')
print(arr[-1::-1, :])
14数据查找
问:如何使用NumPy根据位置查找元素
输入:
arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)
备注:在arr2中根据arr1中元素以位置查找
答案:
arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)
print(arr1)
print(arr2)
print(np.take(arr2,arr1))
15数据计算
问:如何使用numpy求余数
输入:
a = 10
b = 3
答案:
np.mod(a,b)
16数据计算
问:如何使用NumPy进行矩阵SVD分解
输入:
A = np.random.randint(1,10,[3,3])
答案:
np.linalg.svd(A)
17数据筛选
问:如何使用NumPy多条件筛选数据
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10)
print(arr[(arr>1)&(arr<7)&(arr%2==0)])
18数据修改
问:如何使用numpy对数组分类
备注:将大于等于7,或小于3的元素标记为1,其余为0
输入:
arr = np.random.randint(1,20,10)
答案:
arr = np.random.randint(1,20,10)
print(arr)
print(np.piecewise(arr, [arr < 3, arr >= 7], [-1, 1]))
19数据修改
问:如何使用NumPy压缩矩阵
备注:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
输入:
arr = np.random.randint(1,10,[3,1])
答案:
arr = np.random.randint(1,10,[3,1])
print(arr)
print(np.squeeze(arr))
20数据计算
问:如何使用numpy求解线性方程组
输入:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
备注:求解Ax=b
答案:
A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
x = np.linalg.solve(A, b)
print(x)
以上就是我总结的NumPy经典20题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路!
完 谢谢观看
上一篇: numpy学得还不错?来试试这20题!(上 ... 下一篇: 用户画像,这么做业务才愿意用 ...