
作者:Jared P. Lander
来源:大数据DT(ID:hzdashuju)
编自:《R语言:实用数据分析和可视化技术》(原书第2版)
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
read.table函数的第一个参数为文件所在路径,可以是本地文件,也可以是网页上的文件。本书主要是从网页读取文件。
任意CSV文件都可以读取,这里使用read.table函数读取一个简单的文件(地址如下):
http://www.jaredlander.com/data/TomatoFirst.csv
> theUrl <-"http://www.jaredlander.com/data/TomatoFirst.csv" > tomato <-read.table(file=theUrl, header=TRUE, sep=",")
利用head命令,我们可以看到下面的结果。
> head(tomato)
如前面所述,第一个参数是文件名(或字符型变量)。注意我们如何显式地使用参数名file、head和sep。函数的参数能够按位置顺序赋值,而不用显式指定参数名,但指定参数名是最佳实践。
第二个参数header,表示数据的第一行,即列名。第三个参数sed,表示数据的分隔符。可以设为“\t”(tab分隔符)或者“;”(分号分隔符),以读取不同类型的文件。
常用但不被熟知的参数是stringAsFactors。将该参数设为FALSE(默认是TRUE)可使字符所在列不被转换成factor列。这样既节省计算时间(当大数据集包含许多字符列,也意味着有许多唯一值),又能保留列为字符。
stringAsFactors参数也可以用在data.frame中。再次创建“Sport”列。
> x <- 10:1 > y <- -4:5 > q <- c("Hockey", "Football", "Baseball", "Curling", "Rugby", + "Lacrosse", "Basketball", "Tennis", "Cricket", "Soccer") > theDF <-data.frame(First=x, Second=y, Sport=q, stringsAsFac=FALSE) > theDF$Sport
read.table函数还有许多参数,最常用的是quote和colClasses参数,分别设置字符的包围符和每列的数据类型。
类似read.csv函数,也有其他用于read.table的封装函数,也有默认参数。它们主要的区别是sep和dec参数。详细情况见表6-1。
▲表6-1 读取大文本文件的函数及其默认参数
大文件使用read.table函数读取到内存比较慢,幸运的是有解决方案。读取大CSV文件和其他文本文件的两个主流的函数是read_delim和fread,前者在readr包中由Hadley Wickham实现,后者在data.table包中由Matt Dowle实现。read_delim和fread运行相当快,因为两者都不把字符数据自动转换成factor。
01、 read_delim函数
readr包提供读取文本文件的一系列函数。最常用的是read_delim函数,读取有分隔符的文件,比如CSV文件。该函数的第一个参数是读取的文件路径或者URL。col_names默认为TRUE,指定文件的第一行为列名。
> library(readr) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato2 <- read_delim(file=theUrl, delim=',') Parsed with column specification: cols( Round = col_integer(), Tomato = col_character(), Price = col_double(), Source = col_character(), Sweet = col_double(), Acid = col_double(), Color = col_double(), Texture = col_double(), Overall = col_double(), `Avg of Totals` = col_double(), `Total of Avg` = col_double() )
read_delim函数执行后会打印列名和数据类型信息,这些信息也可以使用head.read_delim函数获得。
readr包中的所有数据提取函数返回的是tibble,该数据类型是data.frame的扩展。最明显的变化是打印的元数据,比如行列数和每列的数据类型。tibble会适应屏幕大小打印相应条数的行列数据。
> tomato2
read_delim函数不仅仅读取速度比read.table函数快,而且不需要设置stringAsFactors参数为FALSE。read_csv、read_csv2和read_tsv函数是read.table函数分隔符分别为逗号(,)、分号(;)和tab(\t)的特殊情况。
注意,数据读取为tbl_df对象,它是tbl的扩展,也是data.frame的扩展。tbl是data.frame的特殊类型,它在dplyr包中定义。每列的数据类型显示在列名的下面,这是个很好的功能。
readr包有一些对read_delim函数封装(预置分隔符)的辅助函数,比如read_csv函数和read_tsv函数。
02 、fread函数
另一个读取大量数据的函数是data.table包的fread函数。第一个参数是读取的文件路径或者URL。header参数表示文件的第一行是列名,sep指定分隔符。该函数的stringAsFactors参数默认设为FALSE。
> library(data.table) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato3 <- fread(input=theUrl, sep=',', header=TRUE)
这里也可以使用head函数查看前几行数据:
> head(tomato3)
该函数读取速度比read.table函数快,结果为data.table对象。data.table对象是data.frame的扩展,其是data.frame的优化。
read_delim或者fread函数读取文件都非常快,具体使用哪个函数取决于dplyr或者data.table包中哪个更适合数据处理。
关于作者:贾里德 P. 兰德(Jared P. Lander),资深数据专家,Lander Analytics公司创始人兼CEO,纽约开放统计编程聚会负责人,哥伦比亚大学统计学兼职教授。在数据管理、多层次模型、机器学习、广义线性模型、可视化、数据管理和统计计算等多个领域拥有丰富经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01