
作者: 豌豆花下猫
来源: Python猫
我想到一种特别的写法,很多人会把它当成 pass 语句的替代。在文章发布后,果然有三条留言提及了它。所谓特别的写法就是下面这个:
# 用 ... 替代 pass def foo(): ...
它是中文标点符号的半个省略号,也即由英文的 3 个点组成。如果你是第一次看到,很可能会觉得奇怪:这玩意是怎么回事?PS:如果你知道它,仔细看过本文后,你同样可能会觉得奇怪!
1、认识一下“...”内置常量
事实上,它是 python 3 中的一个内置对象,有个正式的名字叫作——Ellipsis,翻译成中文就是“省略号”。
更准确地说,它是一个内置常量(Built-in Constant),是 6 大内置常量之一(另外几个是 None、False、True、NotImplemented、__debug__)。
关于这个对象的基础性质,下面给出了一张截图,你们应该能明白我的意思:
“...“并不神秘,它只是一个可能不多见的符号型对象而已。用它替换 pass,在语法上并不会报错,因为 Python 允许一个对象不被赋值引用。
严格来说, 这是旁门左道,在语义上站不住脚——把“...”或其它常量或已被赋值的变量放在一个空的缩进代码块中,它们是与动作无关的,只能表达出“这有个没用的对象,不用管它”。
Python 允许这些不被实际使用的对象存在,然而聪明的 IDE 应该会有所提示(我用的是Pycharm),比如告诉你:Statement seems to have no effect 。
但是“...”这个常量似乎受到了特殊对待,我的 IDE 上没有作提示。
很多人已经习惯上把它当成 pass 那样的空操作来用了(在最早引入它的邮件组讨论中,就是举了这种用法的例子)。但我本人还是倾向于使用 pass,不知道你是怎么想的呢?
2、奇怪的 Ellipsis 和 ...
... 在 PEP-3100 中被引入,最早合入在 Python 3.0 版本,而 Ellipsis 则在更早的版本中就已包含。
虽然官方说它们是同一个对象的两种写法,而且说成是单例的(singleton),但我还发现一个非常奇怪的现象,与文档的描述是冲突的:
如你所见,赋值给 ... 时会报错SyntaxError: cannot assign to Ellipsis ,然而 Ellipsis 却可以被赋值,它们的行为根本就不同嘛!被赋值之后,Ellipsis 的内存地址以及类型属性都改变了,它成了一个“变量”,不再是常量。
作为对比,给 True 或 None 之类的常量赋值时,会报错SyntaxError: cannot assign to XXX,但是给 NotImplemented 常量赋值时不会报错。
众所周知,在 Python 2 中也可以给布尔对象(True/False)赋值,然而 Python 3 已经把它们改造成不可修改的。
所以有一种可能的解释:Ellipsis 和 NotImplemented 是 Python 2 时代的遗留产物,为了兼容性或者只是因为核心开发者遗漏了,所以它们在当前版本(3.8)中还可以被赋值修改。
... 出生在 Python 3 的时代,或许在将来会完全取代 Ellipsis。目前两者共存,它们不一致的行为值得我们注意。我的建议:只使用"..."吧,就当 Ellipsis 已经被淘汰了。
3、为什么要使用“...”对象?
接下来,让我们回到标题的问题:Python 为什么要使用“...”对象?
这里就只聚焦于 Python 3 的“...”了,不去追溯 Ellipsis 的历史和现状。
之所以会问这个问题,我的意图是想知道:它有什么用处,能够解决什么问题?从而窥探到 Python 语言设计中的更多细节。
大概有如下的几种答案:
(1)扩展切片语法
官方文档中给出了这样的说明:
Special value used mostly in conjunction with extended slicing syntax for user-defined container data types.
这是个特殊的值,通常跟扩展的切片语法相结合,用在自定义的数据类型容器上。
文档中没有给出具体实现的例子,但用它结合__getitem__() 和 slice() 内置函数,可以实现类似于 [1, ..., 7] 取出 7 个数字的切片片段的效果。
由于它主要用在数据操作上,可能大部分人很少接触。听说 Numpy 把它用在了一些语法糖用法上,如果你在用 Numpy 的话,可以探索一下都有哪些玩法?
(2)表达“未完成的代码”语义
... 可以被用作占位符,也就是我在《Python 为什么要有 pass 语句?》中提到 pass 的作用。前文中对此已有部分分析。
有人觉得这样很 cute,这种想法获得了 Python 之父 Guido 的支持 :
(3)Type Hint 用法
Python 3.5 引入的 Type Hint 是“...”的主要使用场合。
它可以表示不定长的参数,比如Tuple[int, ...] 表示一个元组,其元素是 int 类型,但数量不限。
它还可以表示不确定的变量类型,比如文档中给出的这个例子:
from typing import TypeVar, Generic T = TypeVar('T') def fun_1(x: T) -> T: ... # T here def fun_2(x: T) -> T: ... # and here could be different fun_1(1) # This is OK, T is inferred to be int fun_2('a') # This is also OK, now T is str
T 在函数定义时无法确定,当函数被调用时,T 的实际类型才被确定。
在 .pyi 格式的文件中,... 随处可见。这是一种存根文件(stub file),主要用于存放 Python 模块的类型提示信息,给 mypy、pytype 之类的类型检查工具 以及 IDE 来作静态代码检查。
(4)表示无限循环
最后,我认为有一个非常终极的原因,除了引入“...”来表示,没有更好的方法。
先看看两个例子:
两个例子的结果中都出现了“...”,它表示的是什么东西呢?
对于列表和字典这样的容器,如果其内部元素是可变对象的话,则存储的是对可变对象的引用。那么,当其内部元素又引用容器自身时,就会递归地出现无限循环引用。
无限循环是无法穷尽地表示出来的,Python 中用 ... 来表示,比较形象易懂,除了它,恐怕没有更好的选择。
最后,我们来总结一下本文的内容:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19