
一、什么是窗口函数
窗口函数又叫做开窗函数,是用于解决复杂报表统计需求的功能强大的一种分析函数。窗口函数通常用于计算基于组的某种聚合值,它和聚合函数的不同之处在于:窗口函数对于每个组返回多行,而聚合函数对于每个组只返回一行。
二、窗口函数基本语句形式
窗口函数带有一个开窗函数over(),包含三个分析子句:
三、窗口函数类别
1、排名函数
SQL标准支持4种用于排名计算的窗口函数。分别为:ROW_NUMBER、NTILE、以及RANK和DENSE_RANK。
在SQL标准中,前两个是一类,后两个是另一类。
ROW_NUMBER:表示根据col1分组,在分组内部根据col2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内是连续且唯一的)。
NTILE函数把窗口分区里的数据行分成数量大致相等的块(根据输入的块数和指定的窗口排序)。
RANK(排名)与DENSE_RANK(密集排名)函数的计算和ROW_NUMBER函数类似,唯一不同之处在于,它们在窗口分区内生成的值不必是唯一的。
如果窗口排序方向是升序,那么RANK函数计算分区内排序值比当前行小的行的数量,在次数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行小的行的数量,在此数量上加1.就是当前行的排名。
如果窗口排序方向是降序,那么RANK函数计算分区内排序属性比当前行大的行的数量,在此数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行大的行的数量,在此数量上加1.就是当前行的排名。
2、分布函数
窗口分布函数主要是为静态统计服务提供数据的分布情况。SQL Server 2012引入了两种窗口分布函数的支持:排名分布函数和逆分布函数。
排名分布函数有PERCENT_RANK(百分位排名)和CUME_DIST(累积分布)两种,逆分布函数也有两个,分别是:PERCENT_CONT(百分位连续)和PERCENTILE_DISC(百分位离散)。
根据标准SQL,分布函数计算数据行在窗口分区中的相对排名,将它表示为介于0~1之间的比值——通常它看做百分比。
假设rk 为数据行的RANK值,RANK函数的窗口描述和分布函数的窗口描述是相同的。假设nr为窗口分区内数据行的行数,np为领先或与当前行的排序值相同的行的数目(为比当前rk减1大的最小rk值,如果当前rk是最大值,则np等于nr)。
PERCENT_RANK(百分位排名)计算公式:(rk-1)/(nr-1)
PERCENT_RANK(百分位排名)的计算公式:np/nr。
逆分布函数,一般叫做百分位,通常会将它执行的计算当作是排名分布函数的倒数。
PERCENTILE_DISC(百分位离散)函数,其中DISC为离散分布模型,返回组中第一个符合条件的值,条件为:其累计分布(CUME_DIST函数)>=输入值。
PERCENT_CONT(百分位连续)函数,其中CONT为连续分布函数。
3、偏移函数
偏移函数分为两种类型,一种是偏移量是相对于当前行的,LAG和LEAD函数;另一个偏移函数的偏移量是相对于窗口框架的开始和结尾的,包括FIRST_VALUE、LAST_VALUE和NTH_VALUE。
LAG和LEAD函数支持窗口分区子句以及窗口排序子句。允许我们从窗口分区中,根据给定的相对于当前行的前偏移量(LAG)和后偏移量(LEAD),返回对应行的值。如果没有指定,偏移量默认为1.
第二类的偏移函数(FIRST_VALUE、LAST_VALUE和NTH_VALUE)在支持窗口分区子句和排序子句的基础上,还可以支持窗口框架子句。
FIRST_VALUE和FIRST_VALUE分别返回框架的第一行和最后一行所有查询的值。NTH_VALUE函数作用是中的相对窗口框架第一行或最后一行的偏移量,使得我们可以取得对应这个偏移量的记录值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08