京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、什么是窗口函数
窗口函数又叫做开窗函数,是用于解决复杂报表统计需求的功能强大的一种分析函数。窗口函数通常用于计算基于组的某种聚合值,它和聚合函数的不同之处在于:窗口函数对于每个组返回多行,而聚合函数对于每个组只返回一行。
二、窗口函数基本语句形式
窗口函数带有一个开窗函数over(),包含三个分析子句:
三、窗口函数类别
1、排名函数
SQL标准支持4种用于排名计算的窗口函数。分别为:ROW_NUMBER、NTILE、以及RANK和DENSE_RANK。
在SQL标准中,前两个是一类,后两个是另一类。
ROW_NUMBER:表示根据col1分组,在分组内部根据col2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内是连续且唯一的)。
NTILE函数把窗口分区里的数据行分成数量大致相等的块(根据输入的块数和指定的窗口排序)。
RANK(排名)与DENSE_RANK(密集排名)函数的计算和ROW_NUMBER函数类似,唯一不同之处在于,它们在窗口分区内生成的值不必是唯一的。
如果窗口排序方向是升序,那么RANK函数计算分区内排序值比当前行小的行的数量,在次数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行小的行的数量,在此数量上加1.就是当前行的排名。
如果窗口排序方向是降序,那么RANK函数计算分区内排序属性比当前行大的行的数量,在此数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行大的行的数量,在此数量上加1.就是当前行的排名。
2、分布函数
窗口分布函数主要是为静态统计服务提供数据的分布情况。SQL Server 2012引入了两种窗口分布函数的支持:排名分布函数和逆分布函数。
排名分布函数有PERCENT_RANK(百分位排名)和CUME_DIST(累积分布)两种,逆分布函数也有两个,分别是:PERCENT_CONT(百分位连续)和PERCENTILE_DISC(百分位离散)。
根据标准SQL,分布函数计算数据行在窗口分区中的相对排名,将它表示为介于0~1之间的比值——通常它看做百分比。
假设rk 为数据行的RANK值,RANK函数的窗口描述和分布函数的窗口描述是相同的。假设nr为窗口分区内数据行的行数,np为领先或与当前行的排序值相同的行的数目(为比当前rk减1大的最小rk值,如果当前rk是最大值,则np等于nr)。
PERCENT_RANK(百分位排名)计算公式:(rk-1)/(nr-1)
PERCENT_RANK(百分位排名)的计算公式:np/nr。
逆分布函数,一般叫做百分位,通常会将它执行的计算当作是排名分布函数的倒数。
PERCENTILE_DISC(百分位离散)函数,其中DISC为离散分布模型,返回组中第一个符合条件的值,条件为:其累计分布(CUME_DIST函数)>=输入值。
PERCENT_CONT(百分位连续)函数,其中CONT为连续分布函数。
3、偏移函数
偏移函数分为两种类型,一种是偏移量是相对于当前行的,LAG和LEAD函数;另一个偏移函数的偏移量是相对于窗口框架的开始和结尾的,包括FIRST_VALUE、LAST_VALUE和NTH_VALUE。
LAG和LEAD函数支持窗口分区子句以及窗口排序子句。允许我们从窗口分区中,根据给定的相对于当前行的前偏移量(LAG)和后偏移量(LEAD),返回对应行的值。如果没有指定,偏移量默认为1.
第二类的偏移函数(FIRST_VALUE、LAST_VALUE和NTH_VALUE)在支持窗口分区子句和排序子句的基础上,还可以支持窗口框架子句。
FIRST_VALUE和FIRST_VALUE分别返回框架的第一行和最后一行所有查询的值。NTH_VALUE函数作用是中的相对窗口框架第一行或最后一行的偏移量,使得我们可以取得对应这个偏移量的记录值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08