京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、什么是窗口函数
窗口函数又叫做开窗函数,是用于解决复杂报表统计需求的功能强大的一种分析函数。窗口函数通常用于计算基于组的某种聚合值,它和聚合函数的不同之处在于:窗口函数对于每个组返回多行,而聚合函数对于每个组只返回一行。
二、窗口函数基本语句形式
窗口函数带有一个开窗函数over(),包含三个分析子句:
三、窗口函数类别
1、排名函数
SQL标准支持4种用于排名计算的窗口函数。分别为:ROW_NUMBER、NTILE、以及RANK和DENSE_RANK。
在SQL标准中,前两个是一类,后两个是另一类。
ROW_NUMBER:表示根据col1分组,在分组内部根据col2排序,而此函数计算的值就表示每组内部排序后的顺序编号(组内是连续且唯一的)。
NTILE函数把窗口分区里的数据行分成数量大致相等的块(根据输入的块数和指定的窗口排序)。
RANK(排名)与DENSE_RANK(密集排名)函数的计算和ROW_NUMBER函数类似,唯一不同之处在于,它们在窗口分区内生成的值不必是唯一的。
如果窗口排序方向是升序,那么RANK函数计算分区内排序值比当前行小的行的数量,在次数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行小的行的数量,在此数量上加1.就是当前行的排名。
如果窗口排序方向是降序,那么RANK函数计算分区内排序属性比当前行大的行的数量,在此数量上加1.就是当前行的排名;
DENSE_RANK函数计算分区内相异的(distinct)排序值比当前行大的行的数量,在此数量上加1.就是当前行的排名。
2、分布函数
窗口分布函数主要是为静态统计服务提供数据的分布情况。SQL Server 2012引入了两种窗口分布函数的支持:排名分布函数和逆分布函数。
排名分布函数有PERCENT_RANK(百分位排名)和CUME_DIST(累积分布)两种,逆分布函数也有两个,分别是:PERCENT_CONT(百分位连续)和PERCENTILE_DISC(百分位离散)。
根据标准SQL,分布函数计算数据行在窗口分区中的相对排名,将它表示为介于0~1之间的比值——通常它看做百分比。
假设rk 为数据行的RANK值,RANK函数的窗口描述和分布函数的窗口描述是相同的。假设nr为窗口分区内数据行的行数,np为领先或与当前行的排序值相同的行的数目(为比当前rk减1大的最小rk值,如果当前rk是最大值,则np等于nr)。
PERCENT_RANK(百分位排名)计算公式:(rk-1)/(nr-1)
PERCENT_RANK(百分位排名)的计算公式:np/nr。
逆分布函数,一般叫做百分位,通常会将它执行的计算当作是排名分布函数的倒数。
PERCENTILE_DISC(百分位离散)函数,其中DISC为离散分布模型,返回组中第一个符合条件的值,条件为:其累计分布(CUME_DIST函数)>=输入值。
PERCENT_CONT(百分位连续)函数,其中CONT为连续分布函数。
3、偏移函数
偏移函数分为两种类型,一种是偏移量是相对于当前行的,LAG和LEAD函数;另一个偏移函数的偏移量是相对于窗口框架的开始和结尾的,包括FIRST_VALUE、LAST_VALUE和NTH_VALUE。
LAG和LEAD函数支持窗口分区子句以及窗口排序子句。允许我们从窗口分区中,根据给定的相对于当前行的前偏移量(LAG)和后偏移量(LEAD),返回对应行的值。如果没有指定,偏移量默认为1.
第二类的偏移函数(FIRST_VALUE、LAST_VALUE和NTH_VALUE)在支持窗口分区子句和排序子句的基础上,还可以支持窗口框架子句。
FIRST_VALUE和FIRST_VALUE分别返回框架的第一行和最后一行所有查询的值。NTH_VALUE函数作用是中的相对窗口框架第一行或最后一行的偏移量,使得我们可以取得对应这个偏移量的记录值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25