京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pyecharts相信大家都不陌生,是一个用于生成 Echarts 图表的类库。 Echarts 是百度开源的一个数据可视化 JS 库,主要用于数据可视化。Pyecharts通过python实现生成echarts图表的类目,功能非常强大,小编今天跟大家分享的就是如何利用Pyecharts绘制出精美地图。
一、安装Pyecharts
pip install pyecharts
二、安装地图包
Pyecharts绘制地图,首先需要安装地图包
pip install echarts-countries-pypkg
pip install echarts-china-provinces-pypkg
pip install echarts-china-cities-pypkg
pip install echarts-china-counties-pypkg
pip install echarts-china-misc-pypkg
pip install echarts-united-kingdom-pypkg
三、 Pyecharts绘制地图
1.世界地图
from pyecharts import Map # 世界地图数据 value = [95.1, 23.2, 43.3, 66.4, 88.5] attr= ["China", "Canada", "Brazil", "Russia", "United States"] map0 = Map("世界地图示例", width=1200, height=600) map0.add("世界地图", attr, value, maptype="world", is_visualmap=True, visual_text_color='#000') map0.render(path="../tmp/世界地图.html")
2.中国地图绘制
from pyecharts import Map # 省和直辖市 province_distribution = {'河南': 45.23, '北京': 37.56, '河北': 21, '辽宁': 12, '江西': 6,'上海': 20, '安徽': 10, '江苏': 16, '湖南': 9, '浙江': 13, '海南': 2,'广东': 22, '湖北': 8, '黑龙江': 11, '澳门': 1, '陕西': 11, '四川': 7,'内蒙古': 3, '重庆': 3, '云南': 6, '贵州': 2, '吉林': 3, '山西': 12,'山东': 11, '福建': 4, '青海': 1, '舵主科技,质量保证': 1, '天津': 1,'其他': 1} provice=list(province_distribution.keys()) values=list(province_distribution.values()) # maptype='china' 只显示全国直辖市和省级 # 数据只能是省名和直辖市的名称 map = Map("中国地图",'中国地图', width=1200, height=600) map.add("", provice, values, visual_range=[0, 50], maptype='china', is_visualmap=True, visual_text_color='#000') # map.show_config() map.render(path="../tmp/中国地图.html")
3.绘制河南省地图
from pyecharts import Map # 城市 -- 指定省的城市 xx市 city = ['郑州市', '安阳市', '洛阳市', '濮阳市', '南阳市', '开封市', '商丘市', '信阳市', '新乡市'] values2 = [1.07, 3.85, 6.38, 8.21, 2.53, 4.37, 9.38, 4.29, 6.1] # 河南地图 数据必须是省内放入城市名 map2 = Map("河南地图",'河南', width=1200, height=600) map2.add('河南', city, values2, visual_range=[1, 10], maptype='河南', is_visualmap=True, visual_text_color='#000') # map2.show_config() map2.render(path="../tmp/河南地图.html")
4.贵阳地图
from pyecharts import Map quxian = ['观山湖区', '云岩区', '南明区', '花溪区', '乌当区', '白云区', '修文县', '息烽县', '开阳县', '清镇市'] values3 = [3, 5, 7, 8, 2, 4, 7, 8, 2, 4] map3 = Map("贵阳地图", "贵阳", width=1200, height=600) map3.add("贵阳", quxian, values3, visual_range=[1, 10], maptype='贵阳', is_visualmap=True) map3.render(path="贵阳地图.html")
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11