京公网安备 11010802034615号
经营许可证编号:京B2-20210330
提到漏斗模型,大家肯定都不陌生,像漏斗一样的模型嘛。我们在商业分析过程中,肯定会遇到各种个样的模型,其中AARRR漏斗模型就是最常见的模型之一。接下来,就跟小编一起来了解一下AARRR漏斗模型的具体内容吧。
AARRR是增长黑客的经典模型,也可以称为用户增长模型,或者海盗法则,本质上是一个流量漏斗模型。AARRR即Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播),分别对应的是产品用户生命周期中的5个重要环节,每个环节的转化都会带来用户流失,但相应的用户价值也会提高。AARRR模型的提出者认为;所有创新型、成长型的企业都应该按照这个模型来做增长。
下面具体来解释以下AARRR5个重要环节:
1.Acquisition获取用户
获取用户一般需要评估的维度有:渠道的获客数量、获客质量等。渠道数量和质量的指标包括:每日新增、累积新增、启动次数、首次交易户、首绑交易户、一次性用户数、平均使用时长等。具体的获取用户的方式,线上方面主要是:网站SEO,SEM,app市场首发、ASO等方式,另外还包括运营活动的H5页面,以及自媒体推广等方式。线下方面主要通过地推形式以及传单形式进行获取。
2.Activation提高活跃度
获取用户之后,利用价格优惠、内容编辑等方法来提高用户的活跃度,让用户使用产品的核心功能,体验到产品的价值。内容多,商品好,价格优惠,但也必须要注意成本。
通过活跃度指标数据,我们可以更清晰的了解到用户的体验,有利于提高用户粘性。
3.Retention提高留存率
留存率指标一般包括:次日、3日、7日、30日留存。通常来说,次日留存>3日留存>7日留存>次月留存。用户的留存量刚开始会下降的比较严重,到了后期会逐渐稳定在一个数量级上。稳定下来的这些用户,基本上就是产品的目标用户了。通过日留存率、周留存率、月留存率等指标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。运营上,采用内容,相互留言等社区用户共建UCG,摆脱初期的PCG模式。电商通过商品质量,O2O通过优质服务提高留存。这些都是业务层面的提高留存。产品模式上,通过会员机制的签到和奖励的机制去提高留存。包括app推送和短信激活方式都是激活用户,提高留存的产品方式。
4.Revenue获取收入
获取收入是应用运营最核心的一块。收入来源主要包括三种:付费应用、应用内付费、以及广告。在国内目前付费应用的接受程度很低,包括Google Play Store在中国也只推免费应用。开发者的收入来源主要是广告,而应用内付费目前在游戏行业应用比较多。
无论是哪种付费方式,收入都直接或间接来自用户。这也就意味着,我们前面的提高活跃度、提高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。
5.Refer自传播
以之前的运营模型来说,通常到第四个层次:获取收入就结束了。但是随着社交网络的兴起,运营又增加了一个层次,这就是基于社交网络的病毒式传播,目前已经成为获取用户的一个新途径。而且这种方式的成本很低,效果好,但前提是产品自身要有足够好的质量和口碑。
从自传播到再次获取新用户,应用运营形成了一个螺旋式上升的轨道。一般优秀的应用会很好地地利用了这个轨道,以此不断扩大自己的用户群体。
以上就是小编今天跟大家分享的关于AARRR漏斗模型的一些基本理论,大家需要结合自己业务中的实际去灵活运用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24