
大家在商业分析过程中,肯定都用到过Tableau和powerBI这两款分析工具,大家平时喜欢哪一款呢?今天小编就把Tableau和powerBI放在一起对比一下,希望能对大家有所帮助。
一、powerBI
1.powerBI简介
powerBI是微软新一代的交互式报表工具,能够将相关的静态报表转换为效果酷炫的可视化的报表,而且还可以根据filter条件,动态筛选数据,对数据进行不同的角度和粒度上的分析。
powerBI 简单快速,可以从 Excel 电子表格或者本地数据库创建快速见解。 并且powerBI 还能够进行丰富的建模和实时分析,以及自定义开发。 总的来说,powerBI既是用户的个人报表和可视化工具,也能够用于组项目、部门甚至是整个企业背后的分析和决策引擎。
powerBI 界面继承了office家族一贯的风格,布局清晰明了,简洁清晰,美观大方。并且powerBI可视化图形清晰漂亮,能够直接生成报表。
2.powerBI产品功能
(1)数据源
powerBI能够支持各类数据源,但是读取方式方面会略有差异,除了常见的Excel和CSV 文件之外,powerBI还能够支持SQL数据库、Acess、Spark、Hadoop/HDFS、第三方API等。
(2)数据清洗
powerBI使用的公式语言为DAX(Data Analysis Expressions)。DAX类似于Excel函数,基本上函数名字都一样,因为大家平常都会使用EXCEL,因此powerBI对小白来说是非常友好的,上手速度会很快。
(3)数据关联
建立表间联系是非常重要,powerBI通常用拖拽关联数据,更加方便快捷。
(4)数据更新
数据更新是powerBI极为重要的一个功能,也是报表自动化的基础,往往与SQL关联。
3.powerBI选型价格
二、Tableau
1.Tableau简介
Tableau是一款数据分析软件,使用起来非常简单方便,只需要导入数据,并结合数据操作,就能实现数据分析,而且还可以生成可视化的图表,直接将通过数据分析得出的信息展示出来。
而且, Tableau的程序很容易操作,我们可以将大量数据直接拖放到数字“画布”上,就能创建好各种图表。
2.Tableau功能
(1)数据源
Excel文件,能够多个sheet作为表。
SQL数据库,定义到数据库,也支持自定义。
连接,合并。假如是sql,建议先在客户端写好,然后再进行录入。
(2)数据安全
Tableau 提供了许多选项来帮助客户实现安全目标。客户可以选择仅基于数据库身份验证来实现安全性,或者是仅仅只在 Tableau 中实现安全性,还能够选择混合安全模型,其中 Tableau Server 内的用户信息是与基础数据库中的数据元素相对应的。Tableau Online 不仅是加强了现有的数据安全策略,而且还符合 SOX、SOC 和 ISAE 行业合规标准。
(3)数据自动刷新
业务人员在仪表盘的界面模式固定好之后,如果数据源中的数据出现增加、删减、修改等情况,支持通过客户端和Server对数据进行更新,每次打开仪表盘后,界面可以自动实时刷新,将变动后的最新数据展示出来。但是,Tableau仅支持增量更新,对于定时更新并不支持。Tableau抽取的数据都会保存到制作的仪表板中,增量更新并不能精确到某张表,必须是对全部数据的更新,如果报表很多,处理起来就很麻烦。
3.Tableau选型价格
三、powerBI与Tableau对比
1.可视化方面
(1)powerBI提供29种标准视觉效果,而Tableau在Show Me功能中只提供24种。但是我们可以将两种软件的标准视觉效果的元素进行组合和修改,得到更多的组合图形。
(2)Tableau的可视化更加标准化,能够非常快速地生成美观的工作表和仪表板。powerBI的视觉效果更具可定制性,能够更好地满足业务的特定需求。
2.数据集成和管理
powerBI和Tableau都集成了多种数据源,但是如果是导入外部数据源,相比powerBI,Tableau可以提供了更多的外部数据接口。powerBI的查询编辑器窗口会在从数据源导入数据后对其进行整形,并且界面与Excel很是相似,功能区内置了许多有用的工具。
总的来说,powerBI和Tableau这两款产品,都是很实用有简单的BI分析工具,功能相似又各有所长,实际选择时需要结合具体的业务需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08