
计算机视觉是入门相对比较困难但是发展前景非常好的领域之一,相信大家都对这一领域感到好奇。小编今天就与大家分享一篇文章:使用OpenCV为视频中美女加上眼线,带你体验计算机视觉有趣有强大的功能吧。废话不多说,快与小编一起来看吧!
以下文章来源: 小白学视觉
作者:小白
计算机视觉是最令人兴奋的领域之一,其应用范围非常广泛。从医学成像到创建最有趣的面部滤镜等各个领域都充分见证了计算机视觉技术的强大。在本文中,我们将尝试创建一个人造眼线笔来模仿Snapchat或Instagram滤波器,为视频中的美女添加上美丽的眼线。最终的结果可以通过下面的动图观察到。
本文介绍的内容适合想要通过计算机视觉来实现一个具有一定展示性功能的计算机视觉初学者。因此,在本文重我们会尽量简化说明,如果您对完整的程序感兴趣,可以在Github上找到完整的代码。Github的链接在本文的文末给出。
在实现本文功能之前,我们需要设置一个新的虚拟环境并安装所有必需的依赖项。这个过程比较简单,我们也在Github里面给出了如何配置环境的具体过程。在本项目中,我们需要使用的工具有OpenCV,NumPy,imutils,SciPy和Dlib。有些小伙伴可能对这些工具和库比较陌生,接下来我们简单介绍一下每个模块的作用。
项目简要介绍
该程序首先从每个面孔中提取68个界标点。在这68个点中,点37–42属于左眼,点43–48属于右眼,具体形式如下图所示。
因为我们的目标是给面部添加眼线,所以我们只对37-48点感兴趣,因此我们提取了这些点。我们将对这些提取的点进行插值。插值意味着我们尝试在两个给定点之间插入点。我们可以使用的插值方式如下图所示。
眼线算法的流程图如下所示
接下来,我们将进一步详细描述该算法。如果小伙伴只对运行代码感兴趣,可以跳至最后一部分。
算法介绍
我们首先需要提取脸部周围边界框的坐标。
OpenCV将图像转换为NumPy数组。numpy.array(即图像的矩阵表示形式)存储在名为的变量中frame。我们使用一个名为face_detector()的函数,该函数返回围绕框架中所有脸部的包围框的坐标。这些边界框坐标存储在一个名为bounding_boxes的变量中。遍历循环bounding_boxes以将眼线应用于帧中检测到的每个脸部。face_landmark_points存储68个坐标点。eye_landmark_points是从getEyeLandmarkPts()函数中得到。
getEyeLandmarkPts()函数使用68个坐标点作为输入并返回具有左上眼睑的坐标4个矩阵,左上眼线(L_eye_top),左下眼线(L_eye_bottom)和相同的右眼(R_eye_top & R_eye_bottom)。这可以通过简单的NumPy索引完成的。我们将端点(pt号37、40、43和46。请参见68个界标点图)向外移动5px,以使外观更逼真。
现在,我们需要对这些点进行插值以获得平滑的曲线,进而可以画出眼线。我们需要对每个曲线进行不同的处理(即L_eye_top,L_eye_bottom,R_eye_top,R_eye_bottom)。因此,我们为每个曲线使用单独的变量名称。interpolateCoordinates()用于在每条曲线上生成插值。重复使用该函数,为每个曲线生成插值坐标。这个函数为每个曲线返回一个插值点数组。
drawEyeLiner()函数将生成的插值点作为参数,并在两个连续点之间画一条线。在两个循环中为每个曲线完成此操作,一个循环用于左眼,另一个循环用于右眼。
调用项目
该项目的用发非常简单,首先从Github上克隆到本地
git clone https://github.com/kaushil24/Artificial-Eyeliner/
接下来,打开命令提示符并键入以下代码以运行示例测试
python3 eyeliner.py -v "Media/Sample Video.mp4"
我们也可以通过将视频路径放在参数中来使用自己的视频。完整的CLI命令如下:
python eyeliner.py [-i image] [-v video] [-d dat] [-t thickness] [-c color] [-s save]
每个参数的具体含义如下:
好了,对这个项目感兴趣的小伙伴可以按照上面的说明来进行尝试,可以通过对程序的修改以达到自己的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29