
计算机视觉是入门相对比较困难但是发展前景非常好的领域之一,相信大家都对这一领域感到好奇。小编今天就与大家分享一篇文章:使用OpenCV为视频中美女加上眼线,带你体验计算机视觉有趣有强大的功能吧。废话不多说,快与小编一起来看吧!
以下文章来源: 小白学视觉
作者:小白
计算机视觉是最令人兴奋的领域之一,其应用范围非常广泛。从医学成像到创建最有趣的面部滤镜等各个领域都充分见证了计算机视觉技术的强大。在本文中,我们将尝试创建一个人造眼线笔来模仿Snapchat或Instagram滤波器,为视频中的美女添加上美丽的眼线。最终的结果可以通过下面的动图观察到。
本文介绍的内容适合想要通过计算机视觉来实现一个具有一定展示性功能的计算机视觉初学者。因此,在本文重我们会尽量简化说明,如果您对完整的程序感兴趣,可以在Github上找到完整的代码。Github的链接在本文的文末给出。
在实现本文功能之前,我们需要设置一个新的虚拟环境并安装所有必需的依赖项。这个过程比较简单,我们也在Github里面给出了如何配置环境的具体过程。在本项目中,我们需要使用的工具有OpenCV,NumPy,imutils,SciPy和Dlib。有些小伙伴可能对这些工具和库比较陌生,接下来我们简单介绍一下每个模块的作用。
项目简要介绍
该程序首先从每个面孔中提取68个界标点。在这68个点中,点37–42属于左眼,点43–48属于右眼,具体形式如下图所示。
因为我们的目标是给面部添加眼线,所以我们只对37-48点感兴趣,因此我们提取了这些点。我们将对这些提取的点进行插值。插值意味着我们尝试在两个给定点之间插入点。我们可以使用的插值方式如下图所示。
眼线算法的流程图如下所示
接下来,我们将进一步详细描述该算法。如果小伙伴只对运行代码感兴趣,可以跳至最后一部分。
算法介绍
我们首先需要提取脸部周围边界框的坐标。
OpenCV将图像转换为NumPy数组。numpy.array(即图像的矩阵表示形式)存储在名为的变量中frame。我们使用一个名为face_detector()的函数,该函数返回围绕框架中所有脸部的包围框的坐标。这些边界框坐标存储在一个名为bounding_boxes的变量中。遍历循环bounding_boxes以将眼线应用于帧中检测到的每个脸部。face_landmark_points存储68个坐标点。eye_landmark_points是从getEyeLandmarkPts()函数中得到。
getEyeLandmarkPts()函数使用68个坐标点作为输入并返回具有左上眼睑的坐标4个矩阵,左上眼线(L_eye_top),左下眼线(L_eye_bottom)和相同的右眼(R_eye_top & R_eye_bottom)。这可以通过简单的NumPy索引完成的。我们将端点(pt号37、40、43和46。请参见68个界标点图)向外移动5px,以使外观更逼真。
现在,我们需要对这些点进行插值以获得平滑的曲线,进而可以画出眼线。我们需要对每个曲线进行不同的处理(即L_eye_top,L_eye_bottom,R_eye_top,R_eye_bottom)。因此,我们为每个曲线使用单独的变量名称。interpolateCoordinates()用于在每条曲线上生成插值。重复使用该函数,为每个曲线生成插值坐标。这个函数为每个曲线返回一个插值点数组。
drawEyeLiner()函数将生成的插值点作为参数,并在两个连续点之间画一条线。在两个循环中为每个曲线完成此操作,一个循环用于左眼,另一个循环用于右眼。
调用项目
该项目的用发非常简单,首先从Github上克隆到本地
git clone https://github.com/kaushil24/Artificial-Eyeliner/
接下来,打开命令提示符并键入以下代码以运行示例测试
python3 eyeliner.py -v "Media/Sample Video.mp4"
我们也可以通过将视频路径放在参数中来使用自己的视频。完整的CLI命令如下:
python eyeliner.py [-i image] [-v video] [-d dat] [-t thickness] [-c color] [-s save]
每个参数的具体含义如下:
好了,对这个项目感兴趣的小伙伴可以按照上面的说明来进行尝试,可以通过对程序的修改以达到自己的需求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22