今天小编给大家分享的文章是:为什么我们的神经网络需要激活函数。神经网络是机器学习里极为重要的一门技术。学习神经网络不仅能让让我们掌握一门强大的机器学习方法,还有利于我们理解深度学习技术。希望通过这篇文章能让大家对神经网络有一个更深刻的理解,对大家的机器学习有所帮助。
文章来源: DeepHub IMBA微信公众号
作者:P**nHub兄弟网站
如果你正在读这篇文章,那么很可能你已经知道什么是神经网络,什么是激活函数,但是,一些关于机器学习的入门课程并不能很清楚地说明,为什么我们需要这些激活函数。我们需要它们吗?没有它们,神经网络还能工作吗?
首先让我们回顾一下关于神经网络的一些事情。它们通常被可视化地表示为一个类似图表的结构,如下图所示:
如上图所示,神经网络有3层:输入层、隐藏层、输出层,共3、4、2个神经元。输入层的节点数量与数据集的特性数量相同。对于隐藏层,您可以自由选择需要多少节点,并且可以使用多个隐藏层。
网络中的每个神经元,除了那些在输入层的神经元,可以被认为是一个线性分类器,它将前一层神经元的所有输出作为输入,并计算这些输出加上一个偏置项的加权和。然后,下一层的神经元将前一层线性分类器计算的值作为输入,然后计算这些值的加权和,依此类推。我们希望,通过以这种方式结合线性分类器,我们可以构建更复杂的分类器,可以代表我们的数据中的非线性模式。
让我们看看下面的例子数据集:
这个数据集不是线性可分的,我们不能将一个类从另一个通过一条线分开。但我们可以通过使用两条线作为决策边界来实现这种分离。
所以,我们可能认为两个中间神经元可以完成这个工作。这两个神经元将学习上图中的两条分离线。然后我们需要一个输出神经元它将之前的两个神经元作为输入,这样它就能正确地进行分类。
对于最后一个做正确分类的神经元,它需要n1和n2隐藏神经元的输出是线性可分的,如果我们把它们画在一个二维平面上。上面画的两条线有方程:
这意味着这两个隐藏的神经元正在计算输入x1和x2的如下线性组合:
我们画出n1和n2看看它们是否有用。
我们对我们的小神经网络感到失望。n1和n2的输出仍然不是线性可分的,因此输出神经元不能正确分类。那么,问题是什么呢?
问题是,任何线性函数的线性组合仍然是线性的,在一张纸上证明它是正确的并不难。这一事实的证据在本文的结尾。所以,不管我们用了多少层或多少神经元,按照我们目前的方式,我们的神经网络仍然只是一个线性分类器。
我们需要更多的东西。我们需要将每个神经元计算出的加权和传递给一个非线性函数,然后将这个函数的输出看作那个神经元的输出。这些函数称为激活函数,它们在允许神经网络学习数据中的复杂模式时非常重要。
[1] 已经证明,具有2层(输入层除外)和非线性激活函数的神经网络,只要在这些层中有足够多的神经元,就可以近似任何函数。那么,如果只有两层就够了,为什么人们现在还在使用更深层次的网络呢?嗯,仅仅因为这两层网络“能够”学习任何东西,这并不意味着它们很容易优化。在实践中,如果我们的网络产能过剩,他们就会给我们提供足够好的解决方案,即使他们没有尽可能地优化。
还有更多种类的激活函数,我们想在上面的示例中使用其中的两种。它们分别是ReLU(直线单元)和tanh(双曲正切),如下图所示。
如果我们在示例中使用ReLU激活,将会发生什么?下图是应用ReLU激活后n1和n2神经元的输出。
现在,我们的这两类点可以用直线分开,这样输出神经元就可以正确地对它们进行分类。
如果我们使用tanh激活,也会发生类似的事情,但这次我们的点之间的差距更大。
同样,输出神经元可以正确地分类这些点。
这里有一个简单的数学证明,证明任何线性函数的线性组合仍然是线性的:
其中a0, a1,…,an是不依赖于输入x1,…,xn的常数。
我希望这篇文章对你有用,谢谢阅读!
参考
[1] Cybenko, G.V. (2006). “Approximation by Superpositions of a Sigmoidal function”. In van Schuppen, Jan H. (ed.). Mathematics of Control, Signals, and Systems. Springer International. pp. 303–314.
作者:Dorian Lazar
deephub翻译组
数据分析咨询请扫描二维码
初阶阶段 统计学基础:深入理解概率、假设检验及回归分析,揭示数据背后的价值意义。 Excel高级应用:掌握数据导入、清洗和动态 ...
2024-12-02基础阶段 统计学基础: 掌握概率、假设检验、回归分析等内容,这些是解读数据背后含义的关键。 Excel高级应用: 学习数据导入、 ...
2024-12-02实习机会 数据分析师实习生在当今数据驱动的时代中拥有丰富的机会,但竞争也异常激烈。他们的日常工作包括从各个来源收集数据, ...
2024-12-02在当今数据驱动的时代,数据分析师的实习机会异常丰富且竞争激烈。本文将深入探讨数据分析师实习机会及建议,揭示行业内的关键信 ...
2024-12-02基础知识 统计学: 掌握数据分析的关键是理解统计学基本概念,如平均值、中位数和回归分析。这些概念为分析数据提供了重要框架 ...
2024-12-02基础知识 数据分析领域的入门之路并不是一帆风顺,就像搭建高楼大厦一样,需要坚实的基础。首先,我们来探讨几个关键的基础知识 ...
2024-12-02在当今信息爆炸的时代,数据成为企业决策的关键驱动力。成为一名优秀的数据分析师,并非仅仅掌握数据的本质,更需要具备多方面的 ...
2024-12-02数据收集与整理 数据分析师需要从多个来源收集数据,包括内部数据库、外部市场数据和社交媒体。 清洗和整理数据以确保准确性和 ...
2024-12-02在当今信息爆炸的时代,数据分析扮演着愈发关键的角色。从数据的收集、清洗、分析到最终的报告撰写,数据分析涵盖了广泛而深入的 ...
2024-12-02揭秘数据分析求职之路 在当今竞争激烈的就业市场中,数据分析专业的就业形势备受关注。究竟数据分析领域的求职难度如何?让我们 ...
2024-12-02数据分析就业挑战与应对策略 在当今社会,数据分析专业的就业并非一帆风顺。竞争激烈,技能要求高,许多人发现找工作并不容易。 ...
2024-12-02在追求成为一名出色的数据分析师的道路上,技术和软技能同样重要。技术技能涵盖了诸多方面,其中包括: 统计学知识 探索庞大数据 ...
2024-12-02从技术到软技能:数据分析的全貌 学习数据分析是一项综合性任务,涉及多方面技能。这些技能主要可以划分为技术技能和软技能两大 ...
2024-12-02作为初学者踏入数据分析领域,掌握一系列关键能力至关重要。这些技能不仅涵盖基础工具的使用,还包括深入的分析方法、对业务的理 ...
2024-12-02欢迎探寻数据分析的奇妙世界!对于初学者而言,融会贯通数据领域的复杂性可能有些令人望而却步。然而,不必惊慌,因为我们将一起 ...
2024-12-02欢迎踏上学习数据分析的旅程!数据已经渗透到我们生活的方方面面,成为决策和创新的关键。无论是提升工作效率、探索数据领域还是 ...
2024-12-02欢迎踏上数据分析的学习之旅!无论是为了提升工作效率,转行成为数据分析师,还是满足对数据分析的好奇心,掌握数据分析技能都将 ...
2024-12-02在当今数据驱动的世界中,选择合适的数据分析工具至关重要。不同工具在功能和应用场景上存在显著差异,影响着数据处理和分析的效 ...
2024-12-02选择适合你的数据分析工具 在进行数据分析时,选择合适的工具至关重要。不同工具有各自的特点和适用场景,因此了解每种工具的优 ...
2024-12-021. 技术驱动与市场需求 数据分析领域正随着技术的不断革新而迎来蓬勃发展。大数据、人工智能(AI)、机器学习(ML)等前沿技术的 ...
2024-12-02