
假设检验问题是统计推断中的一类重要问题,小编在之前给大家整理,分享过假设检验的基本步骤,今天给大家带来的是常见的假设检验方法,希望对大家有所帮助。
一、假设检验基本概念
假设检验是用来判断样本与样本之间,以及样本与总体之间的差异,是由抽样误差引起的,还是本质差别造成的一种方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。
其基本思想为小概率反证法思想。小概率思想认为小概率事件在一次试验中基本上不可能发生,在这种方法下,我们先对总体的特征作出某种假设,这一假设大概率能够成立,但假如在一次试验中,试验结果与原假设相背离,也就代表着小概率事件发生了,那我们就有理由对原假设的真实性产生怀疑,从而拒绝这一假设。如果并没有与原假设相背离的实验结果出现,那么久不能拒绝原假设,从而需要接受原假设。
在假设检验中小概率常记为α,称为显著性水平。原假设,记作H0.与H0相反的假设叫做备择假设,代表着原假设被拒绝时而应接受的假设,记作H1.
二、常见的假设检验方法
1.T检验
又叫做student t检验,即Student's t test,通常用于样本含量较小(一般n<30),总体标准差σ未知的正态分布。目的为:比较样本均数所代表的未知总体均数μ和已知总体均数μ0.
1)若要评断一个总体中的小样本平均数与总体平均值之间的差异程度,其统计量T值的计算公式为:
2)若要评断两组样本平均数之间的差异程度,其统计量T值的计算公式为:
T检验适用条件:
(1) 已知一个总体均数;
(2)能够得到一个样本均数及该样本标准差;
(3) 样本是来自正态或者是近似正态总体。
2.U检验(Z检验)
Z检验是通常用于大样本(也就是样本容量>30)平均值差异性检验的方法。是用标准正态分布的理论来推断差异发生的概率,从而对两个平均数的差异进行比较,判断该差异是否显著。
Z检验步骤:
(1)建立假设 H0:μ1 = μ2 ,也就是先假定两个平均数之间没有显著差异。
(2)比较样本均值和总体均值
比较两个样本的平均值
(3)对计算所得Z值与理论Z值进行比较,推断发生的概率,依据Z值与差异显著性关系表作出判断。
3.卡方检验
卡方检验又叫做X2检验,简单来说就是,检验两个变量之间有没有关系。
卡方检验属于非参数检验,通常是用来比较两个及两个以上样本率(构成比),以及两个分类变量的关联性分析。基本思想为:比较理论频数和实际频数的吻合程度或者拟合优度问题。
X2计算公式为:
4.F 检验
F 检验是为检验方差是否有显著性差异。经常被叫做,联合假设检验(joint hypotheses test),也可以叫做方差比率检验、方差齐性检验。
F 检验为一种在零假设(null hypothesis, H0)情况之下,统计值服从F-分布的检验。
F 检验计算公式
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29