大家在工作和生活中经常会遇到处理EXCEL表格的时候,例如将一个EXCEL表格中的内容处理之后复制到另外一个EXCEL表格之中,或者大批量处理EXCEL,无论是哪种情况,如果我们不借助工具,自己一条条去处理的话,估计要耗费不少的时间和经历。今天小编就教大家如何用python处理EXCEL,希望能帮助大家提高效率。
今天处理EXCEL需要用到python的第三方库:openpyxl。
pip install openpyxl安装。
下面来看一下具体步骤:
一、获取EXCEL
1、读取Excel文件
首先导入相关函数
from openpyxl import load_workbook
# 默认可以读写,如果有需要可以指定
write_only和read_only为True
wb = load_workbook('pythontab.xlsx')
默认打开的文件为可读写,若有需要可以指定参数read_only为True。
2、获取工作表--Sheet
# 获得所有sheet的名称
print(wb.get_sheet_names())
# 根据sheet名称获取sheet
a_sheet = wb.get_sheet_by_name('Sheet1')
# 获取sheet名称
print(a_sheet.title)
# 获得当前正在显示的sheet, 也可以用
wb.get_active_sheet()
sheet = wb.active
3、获取单元格
# 获取某个单元格的值,观察EXCEL发现也是先字母再数字的顺序,也就是先列再行
b4 = sheet['B4']
# 分别返回
print(f'({b4.column}, {b4.row}) is {b4.value}') # 返回的数字就是int型
# 除了用下标的方式获取之外,还能使用cell函数, 换成数字,这个表示B2
b4_too = sheet.cell(row=4. column=2)
print(b4_too.value)
4、获取行和列
sheet.rows是生成器, 里面为每一行的数据,每一行又被一个tuple包裹。
sheet.columns类似,但是里面的每个tuple是每一列的数据。
# 由于按行,因此返回顺序为A1. B1. C1
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1. A2. A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
通过上述四步的代码我们就能获取所有单元格的数据。
二、将数据写入Excel
1.工作表
首先导入WorkBook
from openpyxl import Workbook
wb = Workbook()
这样,一个新的工作表就建好了,但是还没被保存。
如果需要指定只写模式,我们可以指定参数write_only=True。通常情况下,默认的可写可读模式就行了。
print(wb.get_sheet_names()) # 提供一个默认名称为Sheet的工作表,如果是office2016新建提供默认名称为Sheet1的工作表
# 直接进行赋值就能够更改工作表的名称
sheet.title = 'Sheet1'
# 新建一个工作表,我们可以指定索引,对其在工作簿中的位置进行合理安排
wb.create_sheet('Data', index=1) # 被安排到第二个工作表,index=0代表第一个位置
# 删除某个工作表
wb.remove(sheet)
del wb[sheet]
2.写入单元格
还能使用公式
# 直接给单元格赋值即可
sheet['A1'] = 'good'
# B9处写入平均值
sheet['B9'] = '=AVERAGE(B2:B8)'
注意:若是读取的时候,则需要加上data_only=True,这样读到B9返回的就是数字,假如不加这个参数,返回的就会是公式本身'=AVERAGE(B2:B8)'
3.append函数
能够一次性添加多行数据,从第一行空白行开始写入。
# 添加一行
row = [1 ,2. 3. 4. 5]
sheet.append(row)
# 添加多行
rows = [
['Number', 'data1', 'data2'],
[2. 40. 30],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
注意:append函数只能按行写入。
4.zip()函数
使用zip我们能够按列写入数据
list(zip(*rows))
# out
[('Number', 2. 3. 4. 5. 6. 7),
('data1', 40. 40. 50. 30. 25. 50),
('data2', 30. 25. 30. 10. 5. 10)]
说明一下:
list(zip(*rows)),首先*rows将列表打散,也可以说是填入了若干个参数,zip从每一个列表中提取第1个值并将其组合成一个tuple,再从每一个列表中提取第2个值,再组合成一个tuple,一直到最短的那个列表的最后一个值提取完毕时结束,其他较长列表的在这之后的值会被舍弃,也就相当于,最后的元组个数是由原来每个参数(可迭代对象)的最短长度决定的。例如:现在随便删掉一个值,最短列表长度为2.那么data2那一列的值就会被全部舍弃。
rows = [
['Number', 'data1', 'data2'],
[2. 40],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
# out
[('Number', 2. 3. 4. 5. 6. 7), ('data1', 40. 40. 50. 30. 25. 50)]
最后zip返回的是zip对象,需要再使用list转换下。
以上就是小编今天跟大家分享的如何使用python处理EXCEL表格的基本操作,获取EXCEL和写入EXCEL,希望对于大家大批量处理EXCEL有所帮助。python是一款功能强大的数据分析工具,我们平时工作中的很多事项都可以用python来进行处理。希望python能帮助大家从繁琐的重复性工作中解脱粗来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03