京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大家在工作和生活中经常会遇到处理EXCEL表格的时候,例如将一个EXCEL表格中的内容处理之后复制到另外一个EXCEL表格之中,或者大批量处理EXCEL,无论是哪种情况,如果我们不借助工具,自己一条条去处理的话,估计要耗费不少的时间和经历。今天小编就教大家如何用python处理EXCEL,希望能帮助大家提高效率。
今天处理EXCEL需要用到python的第三方库:openpyxl。
pip install openpyxl安装。
下面来看一下具体步骤:
一、获取EXCEL
1、读取Excel文件
首先导入相关函数
from openpyxl import load_workbook
# 默认可以读写,如果有需要可以指定
write_only和read_only为True
wb = load_workbook('pythontab.xlsx')
默认打开的文件为可读写,若有需要可以指定参数read_only为True。
2、获取工作表--Sheet
# 获得所有sheet的名称
print(wb.get_sheet_names())
# 根据sheet名称获取sheet
a_sheet = wb.get_sheet_by_name('Sheet1')
# 获取sheet名称
print(a_sheet.title)
# 获得当前正在显示的sheet, 也可以用
wb.get_active_sheet()
sheet = wb.active
3、获取单元格
# 获取某个单元格的值,观察EXCEL发现也是先字母再数字的顺序,也就是先列再行
b4 = sheet['B4']
# 分别返回
print(f'({b4.column}, {b4.row}) is {b4.value}') # 返回的数字就是int型
# 除了用下标的方式获取之外,还能使用cell函数, 换成数字,这个表示B2
b4_too = sheet.cell(row=4. column=2)
print(b4_too.value)
4、获取行和列
sheet.rows是生成器, 里面为每一行的数据,每一行又被一个tuple包裹。
sheet.columns类似,但是里面的每个tuple是每一列的数据。
# 由于按行,因此返回顺序为A1. B1. C1
for row in sheet.rows:
for cell in row:
print(cell.value)
# A1. A2. A3这样的顺序
for column in sheet.columns:
for cell in column:
print(cell.value)
通过上述四步的代码我们就能获取所有单元格的数据。
二、将数据写入Excel
1.工作表
首先导入WorkBook
from openpyxl import Workbook
wb = Workbook()
这样,一个新的工作表就建好了,但是还没被保存。
如果需要指定只写模式,我们可以指定参数write_only=True。通常情况下,默认的可写可读模式就行了。
print(wb.get_sheet_names()) # 提供一个默认名称为Sheet的工作表,如果是office2016新建提供默认名称为Sheet1的工作表
# 直接进行赋值就能够更改工作表的名称
sheet.title = 'Sheet1'
# 新建一个工作表,我们可以指定索引,对其在工作簿中的位置进行合理安排
wb.create_sheet('Data', index=1) # 被安排到第二个工作表,index=0代表第一个位置
# 删除某个工作表
wb.remove(sheet)
del wb[sheet]
2.写入单元格
还能使用公式
# 直接给单元格赋值即可
sheet['A1'] = 'good'
# B9处写入平均值
sheet['B9'] = '=AVERAGE(B2:B8)'
注意:若是读取的时候,则需要加上data_only=True,这样读到B9返回的就是数字,假如不加这个参数,返回的就会是公式本身'=AVERAGE(B2:B8)'
3.append函数
能够一次性添加多行数据,从第一行空白行开始写入。
# 添加一行
row = [1 ,2. 3. 4. 5]
sheet.append(row)
# 添加多行
rows = [
['Number', 'data1', 'data2'],
[2. 40. 30],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
注意:append函数只能按行写入。
4.zip()函数
使用zip我们能够按列写入数据
list(zip(*rows))
# out
[('Number', 2. 3. 4. 5. 6. 7),
('data1', 40. 40. 50. 30. 25. 50),
('data2', 30. 25. 30. 10. 5. 10)]
说明一下:
list(zip(*rows)),首先*rows将列表打散,也可以说是填入了若干个参数,zip从每一个列表中提取第1个值并将其组合成一个tuple,再从每一个列表中提取第2个值,再组合成一个tuple,一直到最短的那个列表的最后一个值提取完毕时结束,其他较长列表的在这之后的值会被舍弃,也就相当于,最后的元组个数是由原来每个参数(可迭代对象)的最短长度决定的。例如:现在随便删掉一个值,最短列表长度为2.那么data2那一列的值就会被全部舍弃。
rows = [
['Number', 'data1', 'data2'],
[2. 40],
[3. 40. 25],
[4. 50. 30],
[5. 30. 10],
[6. 25. 5],
[7. 50. 10],
]
# out
[('Number', 2. 3. 4. 5. 6. 7), ('data1', 40. 40. 50. 30. 25. 50)]
最后zip返回的是zip对象,需要再使用list转换下。
以上就是小编今天跟大家分享的如何使用python处理EXCEL表格的基本操作,获取EXCEL和写入EXCEL,希望对于大家大批量处理EXCEL有所帮助。python是一款功能强大的数据分析工具,我们平时工作中的很多事项都可以用python来进行处理。希望python能帮助大家从繁琐的重复性工作中解脱粗来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01