
我们都知道python是一中功能强大,易上手的计算机编程语言,应用范围很是广泛。我们平时可以使用python进行数据统计,报表制作等,有时候也会遇到内容识别的场景,需要将汉字转换成拼音。今天小编跟大家分享的这篇文章就是教大家利用python将汉字转化成拼音的,希望对大家学习和使用python有所帮助。
以下文章来源: AI入门学习
作者:小伍哥
最近做一个项目,发现很多场景,把汉字转换成拼音,然后进行深度学习分类,能够取得非常不错的效果,在做内容识别,特别是涉及到同音字的时候,转换成拼音就显得特别重要。比如垃圾广告识别:公众号、工仲号、躬总号,公众號、微信、威信、维伈.........,pypinyin是我用的一个比较好用的包是
给大家分享下,当然,在其他很多场景也是可以使用的,排序、检索等等场合。
GitHub: https://github.com/mozillazg/python-pinyin
文 档:https://pypinyin.readthedocs.io/zh_CN/master/
PyPi :https://pypi.org/project/pypinyin/
#可以使用 pip 进行安装 pip install pypinyin #easy_install 安装 easy_install pypinyin #源码安装 python setup.py install
语法:pypinyin.pinyin(hans, style=Style.TONE, heteronym=False, errors='default', strict=True)
功能:将汉字转换为拼音,返回汉字的拼音列表。
参数:
from pypinyin import pinyin, Style import pypinyin #普通模式 pinyin('中心') [['zhōng'], ['xīn']] pinyin('公众号') [['gōng'], ['zhòng'], ['hào']] # 启用多音字模式 pinyin('中心', heteronym=True) [['zhōng', 'zhòng'], ['xīn']] # 设置拼音风格 pinyin('中心', style=Style.NORMAL ) #普通风格 [['zhong'], ['xin']] pinyin('中心', style=Style.FIRST_LETTER) [['z'], ['x']] pinyin('中心', style=Style.TONE2) [['zho1ng'], ['xi1n']] pinyin('中心', style=Style.TONE3) [['zhong1'], ['xin1']] pinyin('中心', style=Style.CYRILLIC)#汉语拼音与俄语字母对照风格 [['чжун1'], ['синь1']]
语法:pypinyin.lazy_pinyin(hans, style=Style, errors='default', strict=True)
功能:将汉字转换为拼音,返回不包含多音字结果的拼音列表,与 pinyin() 的区别是返回的拼音是个字符串, 并且每个字只包含一个读音
参数:
from pypinyin import lazy_pinyin, Style import pypinyin lazy_pinyin('中心') ['zhong', 'xin'] lazy_pinyin('微信公众号') ['wei', 'xin', 'gong', 'zhong', 'hao'] lazy_pinyin('中心', style=Style.TONE) ['zhōng', 'xīn'] lazy_pinyin('中心', style=Style.FIRST_LETTER) ['z', 'x'] lazy_pinyin('中心', style=Style.TONE2) ['zho1ng', 'xi1n'] lazy_pinyin('中心', style=Style.CYRILLIC) ['чжун1', 'синь1']
功能:将汉字转换为拼音,然后生成 slug 字符串,简单说就是自定义分隔符
语法:pypinyin.slug(hans , style=Style, heteronym=False, separator='-', errors='default', strict=True)
import pypinyin from pypinyin import Style pypinyin.slug('我是中国人') 'wo-shi-zhong-guo-ren' pypinyin.slug('我是中国人', separator=' ') 'wo shi zhong guo ren' pypinyin.slug('中国人2020雄起', separator=' ')#遇到数字等非汉字不注音 'zhong guo ren 2020 xiong qi' pypinyin.slug('中国人2020雄起', style=Style.FIRST_LETTER) 'z-g-r-2020-x-q' pypinyin.slug('我是中国人', style=Style.CYRILLIC) 'во3-ши4-чжун1-го2-жэнь'
功能:载入用户自定义的单字拼音库
语法: pypinyin.load_single_dict(pinyin_dict, style='default')
参数:
5、 pypinyin.load_phrases_dict
功能:载入用户自定义的词语拼音库
语法: pypinyin.load_phrases_dict(phrases_dict, style='default')
参数:
假如需要找出一个垃圾评价的相似样本,用汉语相似性远远小于拼音,这个时候,拼音就能发挥很大的优势。
当然转换成拼音后,把每个音节当一个词,进行深度学习,效果也是非常好的。
S1 = '加公众号:小优惠,领券,便宜购买' S2 = '伽工仲号:小优惠,伶绻,便宜购买' #汉语相似 simi_1 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2)))#相似不懂的可以看我前面集合的文章 simi_1 0.5 #转换成拼音后显示 S1 = lazy_pinyin(S1) S2 = lazy_pinyin(S2) simi_2 = len(set(S1).intersection(set(S2)))/len(set(S1).union(set(S2))) simi_2 0.875
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22