
商业分析中经常会用到漏斗图。尤其是在网站流量监控、电商商品转化等一些数据运营方面。漏斗图之所以是漏斗就就是倒三角的形状,是因为用户或者流量,集中从某个功能点进入,很大可能会按照产品本身设定的流程来完成操作。漏斗图能够对按照流程操作的用户进行各个转化层级上的监控,找出每一层级的问题,并加以优化;对那些没有按照流程操作的用户,对他们的转化路径进行,寻找能够提升用户体验,缩短路径的空间。
漏斗图最典型的应用,就是在电商网站的转化方面,用户在购买商品或者服务的时候一定会按照预先设定的购买流程进行下单,支付。
既然漏斗图如此有用,那么应该怎样进行绘制呢,别急,下面小编就给大家分享用python绘制漏斗图的方法。
注意:运行环境是:Win10+Python3+jupyter notebook
下面绘制漏斗图主要用到的是python的pyecharts包,具体是用漏斗图分析用户购买流程中各个环节的转化率
attrs = data['环节'].tolist() attr_value = (np.array(data['总体转化率'])* 100).tolist() funnel1 = Funnel("总体转化漏斗图一",width=800, height=400, title_pos='center') funnel1.add(name="商品交易行环节", # 指定图例名称 attr=attrs, # 指定属性名称 value = attr_value, # 指定属性所对应的值 is_label_show=True, # 指定标签是否显示 label_formatter='{c}%', # 指定标签显示的格式 label_pos="inside", # 指定标签的位置 legend_orient='vertical', # 指定图例的方向 legend_pos='left', # 指定图例的位置 is_legend_show=True) # 指定图例是否显示 funnel1.render() funnel1
unnel2 = Funnel("总体转化漏斗图二",width=800, height=400, title_pos='center') funnel2.add(name="商品交易环节", # 指定图例名称 attr=attrs, # 指定属性名称 value = attr_value, # 指定属性所对应的值 is_label_show=True, # 指定标签是否显示 label_formatter='{b}{c}%', # 指定标签显示的格式 label_pos="outside", # 指定标签的位置 is_legend_show=False) # 指定图例不显示图例 funnel2.render() funnel2
但是这里还是需要提醒大家,漏斗图虽然可以很直观的反映出营销环节所存在的问题,并帮助我们找到解决问题的方法,实现整个流程的优化。需要注意的是,单一的漏斗图对于商业分析来说意义并不是很大,我们并不能仅通过一个漏斗图来评价某个营销流程中各关键步骤的转化率时好时坏,还必须结合趋势、比较和细分的方法对整个营销流程中每一步骤的转化率进行综合分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04