商业分析中经常会用到漏斗图。尤其是在网站流量监控、电商商品转化等一些数据运营方面。漏斗图之所以是漏斗就就是倒三角的形状,是因为用户或者流量,集中从某个功能点进入,很大可能会按照产品本身设定的流程来完成操作。漏斗图能够对按照流程操作的用户进行各个转化层级上的监控,找出每一层级的问题,并加以优化;对那些没有按照流程操作的用户,对他们的转化路径进行,寻找能够提升用户体验,缩短路径的空间。
漏斗图最典型的应用,就是在电商网站的转化方面,用户在购买商品或者服务的时候一定会按照预先设定的购买流程进行下单,支付。
既然漏斗图如此有用,那么应该怎样进行绘制呢,别急,下面小编就给大家分享用python绘制漏斗图的方法。
注意:运行环境是:Win10+Python3+jupyter notebook
下面绘制漏斗图主要用到的是python的pyecharts包,具体是用漏斗图分析用户购买流程中各个环节的转化率
attrs = data['环节'].tolist()
attr_value = (np.array(data['总体转化率'])* 100).tolist()
funnel1 = Funnel("总体转化漏斗图一",width=800, height=400, title_pos='center')
funnel1.add(name="商品交易行环节", # 指定图例名称
attr=attrs, # 指定属性名称
value = attr_value, # 指定属性所对应的值
is_label_show=True, # 指定标签是否显示
label_formatter='{c}%', # 指定标签显示的格式
label_pos="inside", # 指定标签的位置
legend_orient='vertical', # 指定图例的方向
legend_pos='left', # 指定图例的位置
is_legend_show=True) # 指定图例是否显示
funnel1.render()
funnel1
unnel2 = Funnel("总体转化漏斗图二",width=800, height=400, title_pos='center')
funnel2.add(name="商品交易环节", # 指定图例名称
attr=attrs, # 指定属性名称
value = attr_value, # 指定属性所对应的值
is_label_show=True, # 指定标签是否显示
label_formatter='{b}{c}%', # 指定标签显示的格式
label_pos="outside", # 指定标签的位置
is_legend_show=False) # 指定图例不显示图例
funnel2.render()
funnel2
怎么样,学会了吗?用python绘制漏斗图是不是很简单?
但是这里还是需要提醒大家,漏斗图虽然可以很直观的反映出营销环节所存在的问题,并帮助我们找到解决问题的方法,实现整个流程的优化。需要注意的是,单一的漏斗图对于商业分析来说意义并不是很大,我们并不能仅通过一个漏斗图来评价某个营销流程中各关键步骤的转化率时好时坏,还必须结合趋势、比较和细分的方法对整个营销流程中每一步骤的转化率进行综合分析。
以上就是小编今天跟大家分享的如何使用python绘制漏斗图的全部内容,希望对大家有所帮助。