
商业分析中经常会用到漏斗图。尤其是在网站流量监控、电商商品转化等一些数据运营方面。漏斗图之所以是漏斗就就是倒三角的形状,是因为用户或者流量,集中从某个功能点进入,很大可能会按照产品本身设定的流程来完成操作。漏斗图能够对按照流程操作的用户进行各个转化层级上的监控,找出每一层级的问题,并加以优化;对那些没有按照流程操作的用户,对他们的转化路径进行,寻找能够提升用户体验,缩短路径的空间。
漏斗图最典型的应用,就是在电商网站的转化方面,用户在购买商品或者服务的时候一定会按照预先设定的购买流程进行下单,支付。
既然漏斗图如此有用,那么应该怎样进行绘制呢,别急,下面小编就给大家分享用python绘制漏斗图的方法。
注意:运行环境是:Win10+Python3+jupyter notebook
下面绘制漏斗图主要用到的是python的pyecharts包,具体是用漏斗图分析用户购买流程中各个环节的转化率
attrs = data['环节'].tolist() attr_value = (np.array(data['总体转化率'])* 100).tolist() funnel1 = Funnel("总体转化漏斗图一",width=800, height=400, title_pos='center') funnel1.add(name="商品交易行环节", # 指定图例名称 attr=attrs, # 指定属性名称 value = attr_value, # 指定属性所对应的值 is_label_show=True, # 指定标签是否显示 label_formatter='{c}%', # 指定标签显示的格式 label_pos="inside", # 指定标签的位置 legend_orient='vertical', # 指定图例的方向 legend_pos='left', # 指定图例的位置 is_legend_show=True) # 指定图例是否显示 funnel1.render() funnel1
unnel2 = Funnel("总体转化漏斗图二",width=800, height=400, title_pos='center') funnel2.add(name="商品交易环节", # 指定图例名称 attr=attrs, # 指定属性名称 value = attr_value, # 指定属性所对应的值 is_label_show=True, # 指定标签是否显示 label_formatter='{b}{c}%', # 指定标签显示的格式 label_pos="outside", # 指定标签的位置 is_legend_show=False) # 指定图例不显示图例 funnel2.render() funnel2
但是这里还是需要提醒大家,漏斗图虽然可以很直观的反映出营销环节所存在的问题,并帮助我们找到解决问题的方法,实现整个流程的优化。需要注意的是,单一的漏斗图对于商业分析来说意义并不是很大,我们并不能仅通过一个漏斗图来评价某个营销流程中各关键步骤的转化率时好时坏,还必须结合趋势、比较和细分的方法对整个营销流程中每一步骤的转化率进行综合分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28