
python之所以这么火,是因为python有许多功能强大的库,能帮助我们完成数据采集、数据挖掘、数据清洗、数据可视化等一系列操作。许多python库安装之后,为了保证使用效果,需要进行更新升级,由于安装的python库比较多,一个一个更起来比较费时、费力,今天小编为大家带来了可以批量更新python库的方法,希望对大家有所帮助。
文章来源: Python猫
作者:豌豆花下猫
众所周知,升级某个库(假设为 xxx),可以用pip install --upgrade xxx 命令,或者简写成pip install -U xxx 。
如果有多个库,可以依次写在 xxx 后面,以空格间隔。那么,如何简单优雅地批量更新系统中全部已安装的库呢?
接下来我们直奔主题,带大家学习几种方法/骚操作吧!
pip list 命令可以查询已安装的库,结合 Linux 的一些命令(cut、sed、awk、grep……),可以直接在命令行中实现批量升级。
先查询一下,看看是什么格式的:
可以看到,前两行是一些提示信息,我们需要从第 3 行开始过滤,那就可以使用awk命令:
python3 -m pip list | awk 'NR>=3{print}' | awk '{print $1}' | xargs python3 -m pip install -U
解释一下这句命令的操作过程:先 list 查询,接着第一个 awk 取出行号大于等于 3 的内容,第二个 awk 取出第一列的内容,然后作为参数传给最后的升级命令。
(PS:测试服务器上有不同版本的 Python,所以作了指定。关于“-m”的用法,推荐阅读:Python 中 -m 的典型用法、原理解析与发展演变)
pip 还支持查询已过期的库,即使用pip list --outdated 命令。默认情况下,查询出的格式跟pip list 相似,有效内容从第三行开始,大家可以试试。
另外,我们还可以指定--format=freeze 格式,效果是这样的:
这样的格式,可以用 cut 命令切割“=”号,然后取第一列:
pip list --outdated --format=freeze | cut -d = -f 1 | xargs pip install -U
以上命令在 Windows 系统中用不了。有没有更为通用的方法呢?
如果是全量升级已安装的库,可以先用pip freeze 命令生成依赖文件,获取到已安装的库及其当前版本号:
pip freeze > requirements.txt
然后修改文件中的“==”为“>=”,接着执行:
pip install -r requirements.txt --upgrade
此方法比较适合于带有依赖文件的具体项目,可以针对该项目来升级所需的库。
早期的 pip 库(<10.0.1)提供了 get_installed_distributions() 方法查询已安装的库,可以在代码中使用:
# 只在早期 pip 版本中用 import pip from subprocess import call packages = [dist.project_name for dist in pip.get_installed_distributions()] call("pip install --upgrade " + ' '.join(packages), shell=True)
在较新版本中,此方法已被废弃,同样的功能要这样写:
# 较新的 pip 版本。但不建议使用 from subprocess import call from pip._internal.utils.misc import get_installed_distributions for dist in get_installed_distributions(): call("pip install --upgrade " + dist.project_name, shell=True)
但是,“_internal”带前缀下划线,表明它并不希望被导出使用。
跟方法二和三相似的还有一种方法。
pkg_resources 是 setuptools 库的一部分,用于查找和管理 Python 库、版本依赖关系、相关联的资源文件等。可以这样写:
# 需要安装 setuptools import pkg_resources from subprocess import call packages = [dist.project_name for dist in pkg_resources.working_set] call("pip install --upgrade " + ' '.join(packages), shell=True)
pip-review 库是一个专门用来方便升级 Python 库的工具,可以查看已过期的库、自动升级或者交互式选择性地升级:
还有一个类似的pip-upgrader 库,也是为了解决批量升级的问题,感兴趣的同学请自行搜索。
pip 官方有计划要提供一个全量升级的(upgrade-all)命令,如果开发出来了,那应该会是最佳选择。
然后,坏消息是这个计划被阻塞了近三年,目前 issue 仍处于 Open 状态,不知道何时能有进展。这里暂且一提吧,未来留意。
前面介绍了六种方法,各有其适用的场景,小伙伴们都学会了么?
除此之外,当然还有其它的方法,比如 stackoverflow 网站上有个“How to upgrade all Python packages with pip?”问题,其下就有比较多的回答。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08