
Python是一款使用方便,易上手的工具,我们平常在工作中经常会用到,而且同时也是一款功能强大的编程语言,被广泛应用于数据分析、web开发、人工智能等行业。但是无论那个行业,哪个领域,想要熟练使用Python,就必须掌握Python的基础知识。
以下文章来源于:微信公众号Python猫
作者: 豌豆花下猫
从接触 Python 时起,我就觉得 Python 的元组解包(unpacking)挺有意思,非常简洁好用。
最显而易见的例子就是多重赋值,即在一条语句中同时给多个变量赋值:
>>> x, y = 1, 2 >>> print(x, y) # 结果:1 2
在此例中,赋值操作符“=”号的右侧的两个数字会被存入到一个元组中,即变成 (1,2),然后再被解包,依次赋值给“=”号左侧的两个变量。
如果我们直接写x = 1,2 ,然后打印出 x,或者在“=”号右侧写成一个元组,就能证实到这一点:
>>> x = 1, 2 >>> print(x) # 结果:(1, 2) >>> x, y = (1, 2) >>> print(x, y) # 结果:1 2
一些博客或公众号文章在介绍到这个特性时,通常会顺着举一个例子,即基于两个变量,直接交换它们的值:
>>> x, y = 1, 2 >>> x, y = y, x >>> print(x, y) # 结果:2 1
一般而言,交换两个变量的操作需要引入第三个变量。道理很简单,如果要交换两个杯子中所装的水,自然会需要第三个容器作为中转。
然而,Python 的写法并不需要借助中间变量,它的形式就跟前面的解包赋值一样。正因为这个形式相似,很多人就误以为Python 的变量交换操作也是基于解包操作。
但是,事实是否如此呢?
我搜索了一番,发现有人试图回答过这个问题,但是他们的回答基本不够全面。(当然,有不少是错误的答案,还有更多人只是知其然,却从未想过要知其所以然)
先把本文的答案放出来吧:Python 的交换变量操作不完全基于解包操作,有时候是,有时候不是!
有没有觉得这个答案很神奇呢?是不是闻所未闻?!
到底怎么回事呢?先来看看标题中最简单的两个变量的情况,我们上dis 大杀器看看编译的字节码:
上图开了两个窗口,可以方便比较“a,b=b,a”与“a,b=1,2”的不同:
很明显,形式相似的两种写法实际上完成的操作并不相同。在交换变量的操作中,并没有装包和解包的步骤!
ROT_TWO 指令是 CPython 解释器实现的对于栈顶两个元素的快捷操作,改变它们指向的引用对象。
还有两个类似的指令是 ROT_THREE 和 ROT_FOUR,分别是快捷交换三和四个变量(摘自:ceval.c 文件,最新的 3.9 分支):
预定义的栈顶操作如下:
查看官方文档中对于这几个指令的解释,其中 ROT_FOUR 是 3.8 版本新加的:
ROT_TWO
Swaps the two top-most stack items.
ROT_THREE
Lifts second and third stack item one position up, moves top down to position three.
ROT_FOUR
Lifts second, third and forth stack items one position up, moves top down to position four.New in version 3.8.
CPython 应该是以为这几种变量的交换操作很常见,因此才提供了专门的优化指令。就像 [-5,256] 这些小整数被预先放到了整数池里一样。
对于更多变量的交换操作,实际上则会用到前面说的解包操作:
截图中的 BUILD_TUPLE 指令会将给定数量的栈顶元素创建成元组,然后被 UNPACK_SEQUENCE 指令解包,再依次赋值。
值得一提的是,此处之所以比前面的“a,b=1,2”多出一个 build 操作,是因为每个变量的 LOAD_FAST 需要先单独入栈,无法直接被组合成 LOAD_CONST 入栈。也就是说,“=”号右侧有变量时,不会出现前文中的 LOAD_CONST 一个元组的情况。
最后还有一个值得一提的细节,那几个指令是跟栈中元素的数量有关,而不是跟赋值语句中实际交换的变量数有关。看一个例子就明白了:
分析至此,你应该明白前文中的结论是怎么回事了吧?
我们稍微总结一下:
以上就是小编今天跟大家分享的python基础语句的一些内容了,希望对大家和使用python有帮助。任何学习都不是一蹴而就的,平时大家要注意多总结,多复盘,并结合实际项目去应用!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04