京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析的最终目的是驱动企业业务增长,今天小编就带大家来看一下数据分析成果落地难的那些问题。
文章来源:微信公众号接地气学堂
作者:接地气的陈老师
落地、见效!是很多做数据分析的同学最怕的四个字。平时自己敲代码加减乘除很嗨,可一提落地就两眼一抹黑。到底要怎么落?落到哪里?完全不知道。每次报告结尾都写上苍劲有力的:本月活跃低了,要搞高!可好像也没人给我搞。咋办……今天系统讲解一下。这里有五个常犯问题。
1 问题一:没有区分服务对象
首先明白一点:在企业里做落地工作,最重要的是经费和人员。好点子多了去了,可离开资金投入与工作团队,点子就永远是个点子。大部分企业的数据分析部门,自己申请不到经费和独立的工作团队,因此更多是借力打力,通过服务业务部门实现分析成功的落地。这就要求我们得:有能力识别业务部门到底是什么人(如下图)。越大的企业,内部小团体越多,各个团体的小目标就越分散。光空喊口号,可没人响应的。
遇到不同人,当然有不同办法。
骄兵悍将:保护自己是第一位的,不要顶撞他们,更要避免沦为他们的甩锅对象。先安分守己,避免出错,再谈其他的。
新兵锐将:这是最优先考虑合作的团队,一旦发现,尽早聊,尽早开工!
疲兵倦将:这些人问题非常突出,且喜欢甩锅,所以除非已经有了有把握的方案,否则不要招惹他们,避免麻烦上身。
虾兵蟹将:这些人容易谈合作,但出成绩难,可以挑其中尚有生机的“活虾”合作,尝试着做一些小成绩,再争取更大的机会。
想克服这个问题,需要数据分析团队有良好的沟通能力及敏锐的识人眼光。特别是数据分析团队领导:如果数据领导自己都是“两耳不闻窗外事,一心关门敲键盘”,那下属也很难推动,很容易让整个团队淹没在无休无止的取数单里。类似的悲剧见得太多太多了,所以列为问题一。
2 问题二:没有清晰落地目标
我们常说:数据分析可以驱动业务,助力增长,洞察趋势。这些都是正确的废话,太大、太空、太虚。想要让数据分析成果在一个部门里落地生根,得把公司目标-部门目标-项目目标串起来。部门的目标服务于公司大目标,我们想落地的目标又服务于部门的目标,这样才能让项目站的稳,站的牢(如下图)。
想克服这个问题,需要数据分析团队的思维,从“我能做”到“我要做”进行转变。
我能做个模型→我要找到运力最缺乏的时间
我能做个报表→我要找出来效率最低的班组
我能做个ppt→我要识别最容易投诉的客户
最后输出的成果,可能还是模型、报表、ppt,但思考的角度,是站在对业务最有用的角度思考。不做这个转变,每日沉迷于笔墨纸砚、加减乘除,最后即使有人愿意合作,也很难出成效。往往让业务部门觉得——太理论化了。
3 问题三:没有区分输出层级
数据分析输出成果是有层级顺序的(如下图)分层级输出,要先看:业务部门对数据理解在什么层次。不做跳跃层级的事,沉住气一步步来,最后结果才容易得到认可。
这里不光新手,很多老手都会踩坑,比如:
不做沟通:不管业务目前啥水平,自己干自己的。
做沟通但没有检验:误以为业务很“数据思维”,结果才发现这帮人只是披着数据外衣的经验主义!
有检验但盲目自大:做数据的,自己看不起报表,觉得报表太简单,非要憋一个超牛逼模型出来,一模定乾坤。
有检验、不自大,但太过纠结:总怕做错,沟通频率太低,自己纠结细节,进度磨磨唧唧。
最后的结果,往往是:
项目工期太久,业务等得不耐烦
项目配合不畅,总被批不懂业务
项目期望值太高,最后一地鸡毛
所以,做数据的同学们,自己得先尊重数据,尊重数据落地的规律,尊重每一种数据产出形式。先打破自己心里的三六九等,站在“让别人认可”而不是“让自己开心”的角度,才能克服这一关。
4 问题四:没有结合业务动作
数据作为一个产品,和所有的产品一样,是有用户,场景,痛点,使用方式的。也和所有的产品一样,场景拆分的越细,越能够击中用户痛点。举个例子,大家就很容易看明白了(如下图):
5 问题五:没有产品化最终成果
这是最后一步,也是最关键的一步:数据产出必须固定成产品/服务。坚决不能让它躺在ppt或者excel里。所有业务对数据的态度,都是“当初求数像条狗,看完报表嫌人丑”。如果没有一个固定的产品或者服务,数据就很容易人走茶凉,事后表功的时候记不到。还容易让别的部门认为:不就是你敲敲键盘就可以了吗,为啥不能!反而做的越多,认可度越低。
所以坚决要出产品:
一来可以插个旗子,让大家记得这是我们的成绩;
二来可以告知未合作的部门,我们能做出什么样的东西,勾引他们合作;
三来可以告知所有人,数据的项目是有流程、人力、时间成本的,要合作就坐下来认真谈,不要指望丢几句话,键盘咔咔一响钞票就破屏而出。
注意,这里讲的产品,是一个广泛的概念,并非是死板的BI+仪表盘。因为,业务使用频率和认可度,是第一位的。很多做数据的同学一提数据产品,就想着搞花里胡哨的仪表盘,很容易让数据产品变成“为做而做”,最后打开率不高,更不指望别人说自己好了。换句话说,只要业务能用起来,数字输出到哪里,炫酷不炫酷,根本没那么重要(如下图)。
6 小结
数据分析成果落地难,本质上是难在“做项目”上。因为数据分析涉及数学、统计学、计算科学等等理论,很多同学会本能的倾向于“做学问”,忘了我们是在企业,企业是为了赚钱而努力。当然,也会有企业本身问题,真遇到队友都是虾兵蟹将,也没啥好办法。所以想把数据落到实处,产生效益,就得因地制宜,结合具体情况考虑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26