京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数据分析过程中,我们会用到各种各样的数据模型。但有些模型并不是完美的,存在者各种各样的缺点,置之不理很可能会影响最终的数据分析结果。这也就意味着,我们需要让模型最优化。通过模型优化,训练出更好的模型,更好的进行数据分析。下面,小编简单整理了几种常用的模型优化方法,希望对大家有所帮助。
1. 梯度下降法(Gradient Descent)
梯度下降法——最早的、最容易,同时也是最长用到的模型优化方法。
梯度下降法实现很容易,在目标函数为凸函数的情况下,梯度下降法的解就是全局解。通常来说,其解是全局最优解这一点并不能保证,而且梯度下降法,它的速度也并不是最快的。梯度下降法的优化思想为:把当前位置负梯度的方向当做搜索方向,这是该这一方向是当前位置的最快下降方向,所以又有”最速下降法“的叫法。梯度下降法越是接近目标值,其步长就会越小,前进也会越慢。
2. 牛顿法和拟牛顿法
a.牛顿法(Newton's method)
牛顿法其实是一种在实数域和复数域上,近似求解方程的方法。此方法使用f (x)函数的泰勒级数里的前面几项来找寻方程f (x) = 0的根。收敛速度快是此方法最大的特点。
因为牛顿法是确定下一次的位置依靠的是当前位置的切线,所以又有"切线法"这一很形象的名称。
b.拟牛顿法(Quasi-Newton Methods)
拟牛顿法可以说是非线性优化问题求解最常用的、最有效的方法了。拟牛顿法是20世纪50年代,由美国Argonne国家实验室的物理学家W.C.Davidon提出的·,这一算法在当时的时代,无疑是非线性优化领域最具有创造性的发明之一了。
拟牛顿法的本质思想为:对牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵这一缺陷进行改善。拟牛顿法使用正定矩阵来近似Hessian矩阵的逆,这样在很大程度上减小了运算的复杂度。拟牛顿法与梯度下降法相同,只对每一步迭代时知道目标函数的梯度有要求。通过测量梯度的变化,构造出一个目标函数的模型,并使之足以产生超线性收敛性。而且相比牛顿法,拟牛顿法并不需要二阶导数的信息,所以有时反而比牛顿法更有效。
3. 共轭梯度法(Conjugate Gradient)
共轭梯度法是介于梯度下降法与牛顿法之间的一个模型优化方法,只需要利用一阶导数信息,但却改善了梯度下降法收敛速度慢这一缺陷,同时又克服了,牛顿法需要存储和计算Hesse矩阵,并求逆的缺点。共轭梯度法既能解决大型线性方程组问题,又是解大型非线性最优化最有用的算法之一。因为共轭梯度法具有所需存储量小,步收敛性,高稳定性,不需要任何外来参数的优点,在各种模型优化方法中,是极为重要的一种。
4. 启发式优化方法
启发式优化方法指的是:人在解决问题时,所采取的一种根据经验规则进行发现的方法。这一方法特点是,当解决问题时,可以利用过去的经验,选择行之有效的方法,而并不是以系统的、确定的步骤去找寻答案。启发式优化方法有很多种类,其中最为经典的有:模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23