NLP(Natural Language Processing)自然语言处理是数据科学领域的一个非常重要的分支,它包含了,以一种高效的方式去分析,理解并从文本中提取信息等重要过程,终极目标是让计算机拥有自然语言处理交际能力。通过利用NLP及其相关组件,可以将大量的文本数据组织起来,以此来执行大量的自动化任务,并用于各种问题的解决,例如自动摘要,命名实体识别,情感分析,关系提取,语音识别、机器翻译和主题分割等。
NLP自然语言处理和计算机语言学,这两者在本质上是一样的,横跨了计算机科学、语言学、人工智能学科等学科。
一、NLP步骤
1、形态处理:
目的为:分割整个输入的文本,形成各种符号集合。这些符号分别与段落、句子及词汇等一一对应。
例:“uneasy”—>“un-easy”。这里“uneasy”就被分割成两个子词符号“un”和“easy”
2、语法分析:
目的为:a、检查句子,确定句式是否合理;b、把句子分解成一个结构,此结构能够将不同单词之间的句法关系显示出来。
例:“The school goes to the boy”这样的会无法通过句法分析器以及句法解释器。
3、语义分析:
确定输入文本的准确含义,或者找出输入文本在字典中的意思。目的为,检查文本是否有意义。
例:“Hot ice-cream”无法通过语义分析器。
4、语用分析:
语用分析简单地拟合实际的对象/事件,这些对象/事件存在于给定的上下文中,其中对象引用是在最后阶段(语义分析)获得的。
例如:“Put the banana in the basket on the shelf”这句话可以有两种语义解释:a把篮子里的香蕉放到书架上;b把香蕉放到书架上的篮子里。语用分析器能够结合上下文在这两种解释之间做出选择。
二. NLP的基本方法
1.基于规则的方法
研究人员,例如如语言学家,通过语言规律的总结,从而形成规则形态的知识库;
研制语言处理算法,并利用这些规则处理自然语言;
结合处理结构,进行规则调整,优化处理效果。
存在的问题:并不能总结出所有规则
2.基于统计的方法
建立能够反应语言使用状况的语料库;
研究人员对自然语言进行统计建模;
利用统计技术或者机器学习技术,借助语料库来进行语言模型的训练;
根据所得到的模型,设计相应算法对语言进行处理;
根据处理效果,优化模型,提高处理能力。
存在的问题:数据稀疏问题也就是长尾效应
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28