
分布式存储,采用分布式的系统结构,将大量的普通服务器,通过网络互联,作为一个整体,利用位置服务器定位存储信息。
1.高可靠性:重点指分布式系统数据安全方面的容灾与备份,数据可靠不丢失。在分布式存储的容灾中,一个重要的手段就是多时间点快照技术,这样用户生产系统可以实现在一定时间间隔内对各版本数据的保存。而且,多时间点快照技术,能够支持同时提取多个时间点的样本,并且同时进行恢复。这一功能对于故障重现也很有帮助,可帮助进行分析和研究,避免类似灾难的再次发生。多时间点快照,周期增量复制等技术为分布式存储的高可靠性提供了保障。
2.高扩展性:分布式存储系统通过对集群服务器规模进行扩展,从而使系统存储容量、计算和性能得到提高。随着业务量的增大,对底层分布式存储系统的性能要求也随之增高。衡量可扩展性的要求集群具有线性的可扩展性,系统整体性能和服务器数量是线性关系。分布式存储有着合理的分布式架构,能够预估并且弹性扩展计算、存储容量和性能。
3.数据一致性:传统的存储架构是使用RAID模式来保证数据的可靠性,而分布式存储则不同,它采用了多副本备份机制,而且多个副本之间保持数据一致性,在存储数据之前,分布式存储对数据进行了分片,并将分片后的数据按照一定的规则在集群节点上进行保存。为了保证多个数据副本之间的一致性,分布式存储通常采用的方法是:一个副本写入,而其余多个副本读取。在数据读取失败时候,系统则可以从其他副本读取数据,进而重新写入该副本,并进行恢复,从而保证了副本的总数的一致性;当数据长时间处于不一致状态时,系统会自动进行数据的重建和恢复,将对业务的影响降到最低。
4.高性能:系统的吞吐量和系统的响应延迟这两项指标,经常被用来衡量分布式存储系统的性能。通常高性能的分布式存储,能够高效地管理读缓存和写缓存,并且能够自动进行分级存储。分布式存储是通过把热点区域内数据映射到高速存储中,以此来提高系统响应的速度;如果这些区域不再是热点,那么存储系统就会将它们从高速存储中移除。而写缓存技术则是配合高速存储,来使得整体存储的性能有显著提高,按一定的策略,先将数据写入高速存储,再在适当的时间里进行同步落盘。
高稳定性:这是一个综合指标,考核分布式 存储系统的整体健壮性,任何异常,系统都能坦然面对,系统稳定性越高越好。
高安全性:由于使用网络进行松耦合链接,分布式存储能够允许高速存储和低速存储分开部署,或者以任意比例混布。在业务环境不可预测,或者应用过于敏捷的情况下,分科技将分层存储的优势发挥到最佳。而且分布式存储系统不受恶意访问和攻击,能够保护存储数据不被窃取。
高可用性:分布式存储系统在面对各种异常时,都可以提供正常服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10