
混淆矩阵(confusion matrix),又被叫做错误矩阵(error matrix)。矩阵的每一列代表分类器对于样本的类别预测,矩阵的每一行代表版本所属的真实类别。
’混淆矩阵‘这个名字来源于,它能够很容易的看到机器学习是否将样本的类别给混淆了(也就是一个class被预测成另一个class)。
混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结,现在假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,共有 27 个动物样本:8只猫, 6条狗, 13只兔子。混淆矩阵如下图:
在预测分析中,混淆矩阵,表现为由false positives,false negatives,true positives和true negatives而组成的两行两列的表格。它允许我们做出除了正确率之外的,更多的分析。
说明一下概念:
真阳性,即 True Positive(TP): 真实为0.预测也为0
真阴性,即 False Negative(FN): 真实为0.预测为1
假阳性 ,即False Positive(FP): 真实为1.预测为0
假阴性,即 True Negative(TN): 真实为1.预测也为1
混淆矩阵延伸出的各个评价指标:
1.正确率(Accuracy):被正确分类的样本比例或数量
Accuracy=(TP+TN)/Total
2.错误率(Misclassification/Error Rate):被错误分类的样本比例或数量
Misclassification/Error Rate)=(FP+FN)/Total
3.真阳率(True Positive Rate)也叫敏感度(sensitivity)或召回率(recall):分类器预测为正例的样本占实际正例样本数量的比例,描述了分类器对正例类别的敏感程度。
True Positive Rate=TP/ actual yes
4.假阳率(False Positive Rate):分类器预测为正例的样本占实际负例样本数量的比例。
False Positive Rate=FP/actual no
5.特异性(Specificity):真实为1的准确率
Specificity=TN/actual no
6. 精度(Precision):在所有判别为正例的结果中,真正正例所占的比例,即预测为0的准确率。
Precision=TP/predicted yes
7.流行程度(Prevalence):正例在样本中所占比例。
Prevalence=Actual Yes/Total
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04