京公网安备 11010802034615号
经营许可证编号:京B2-20210330
混淆矩阵(confusion matrix),又被叫做错误矩阵(error matrix)。矩阵的每一列代表分类器对于样本的类别预测,矩阵的每一行代表版本所属的真实类别。
’混淆矩阵‘这个名字来源于,它能够很容易的看到机器学习是否将样本的类别给混淆了(也就是一个class被预测成另一个class)。
混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结,现在假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,共有 27 个动物样本:8只猫, 6条狗, 13只兔子。混淆矩阵如下图:
在预测分析中,混淆矩阵,表现为由false positives,false negatives,true positives和true negatives而组成的两行两列的表格。它允许我们做出除了正确率之外的,更多的分析。
说明一下概念:
真阳性,即 True Positive(TP): 真实为0.预测也为0
真阴性,即 False Negative(FN): 真实为0.预测为1
假阳性 ,即False Positive(FP): 真实为1.预测为0
假阴性,即 True Negative(TN): 真实为1.预测也为1
混淆矩阵延伸出的各个评价指标:
1.正确率(Accuracy):被正确分类的样本比例或数量
Accuracy=(TP+TN)/Total
2.错误率(Misclassification/Error Rate):被错误分类的样本比例或数量
Misclassification/Error Rate)=(FP+FN)/Total
3.真阳率(True Positive Rate)也叫敏感度(sensitivity)或召回率(recall):分类器预测为正例的样本占实际正例样本数量的比例,描述了分类器对正例类别的敏感程度。
True Positive Rate=TP/ actual yes
4.假阳率(False Positive Rate):分类器预测为正例的样本占实际负例样本数量的比例。
False Positive Rate=FP/actual no
5.特异性(Specificity):真实为1的准确率
Specificity=TN/actual no
6. 精度(Precision):在所有判别为正例的结果中,真正正例所占的比例,即预测为0的准确率。
Precision=TP/predicted yes
7.流行程度(Prevalence):正例在样本中所占比例。
Prevalence=Actual Yes/Total
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01