相信大家在机器学习中,一定常见到;SVC,NvSVC,LinearSVC,今天我们就来看看这三者的区别。
SVC(C-Support Vector Classification):
支持向量分类,基于libsvm实现的,数据拟合的时间复杂度是数据样本的二次方,这使得他很难扩展到10000个数据集,当输入是多类别时(SVM最初是处理二分类问题的),通过一对一的方案解决,例如:
SVC参数解释 (1)C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0; (2)kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是"RBF"; (3)degree:if you choose 'Poly' in param 2, this is effective, degree决定了多项式的最高次幂; (4)gamma:核函数的系数('Poly', 'RBF' and 'Sigmoid'), 默认是gamma = 1 / n_features; (5)coef0:核函数中的独立项,'RBF' and 'Poly'有效; (6)probablity: 可能性估计是否使用(true or false); (7)shrinking:是否进行启发式; (8)tol(default = 1e - 3): svm结束标准的精度; (9)cache_size: 制定训练所需要的内存(以MB为单位); (10)class_weight: 每个类所占据的权重,不同的类设置不同的惩罚参数C, 缺省的话自适应; (11)verbose: 跟多线程有关,不大明白啥意思具体; (12)max_iter: 最大迭代次数,default = 1, if max_iter = -1, no limited; (13)decision_function_shape : ‘ovo’ 一对一, ‘ovr’ 多对多 or None 无, default=None (14)random_state :用于概率估计的数据重排时的伪随机数生成器的种子。 ps:7,8,9一般不考虑。 from sklearn.svm import SVC import numpy as np X= np.array([[-1,-1],[-2,-1],[1,1],[2,1]]) y = np.array([1,1,2,2]) clf = SVC() clf.fit(X,y) print clf.fit(X,y) print clf.predict([[-0.8,-1]])
NuSVC(Nu-Support Vector Classification.):
核支持向量分类,和SVC类似,也是基于libsvm实现的,但不同的是通过一个参数空值支持向量的个数
NuSVC参数 nu:训练误差的一个上界和支持向量的分数的下界。应在间隔(0,1 ]。 其余同SVC ''' import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) from sklearn.svm import NuSVC clf = NuSVC() clf.fit(X, y) print clf.fit(X,y) print(clf.predict([[-0.8, -1]]))
LinearSVC(Linear Support Vector Classification):
线性支持向量分类,类似于SVC,但是其使用的核函数是”linear“上边介绍的两种是按照brf(径向基函数计算的,其实现也不是基于LIBSVM,所以它具有更大的灵活性在选择处罚和损失函数时,而且可以适应更大的数据集,它支持密集和稀疏的输入是通过一对一的方式解决的
LinearSVC 参数解释
C:目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0;
loss :指定损失函数
penalty :
dual :选择算法来解决对偶或原始优化问题。当n_samples > n_features 时dual=false。
tol :(default = 1e - 3): svm结束标准的精度;
multi_class:如果y输出类别包含多类,用来确定多类策略, ovr表示一对多,“crammer_singer”优化所有类别的一个共同的目标
如果选择“crammer_singer”,损失、惩罚和优化将会被被忽略。
fit_intercept :
intercept_scaling :
class_weight :对于每一个类别i设置惩罚系数C = class_weight[i]*C,如果不给出,权重自动调整为 n_samples / (n_classes * np.bincount(y))
verbose:跟多线程有关,不大明白啥意思具体
from sklearn.svm import LinearSVC
X=[[0],[1],[2],[3]]
Y = [0,1,2,3]
clf = LinearSVC(decision_function_shape='ovo') #ovo为一对一
clf.fit(X,Y)
print clf.fit(X,Y)
dec = clf.decision_function([[1]]) #返回的是样本距离超平面的距离
print dec
clf.decision_function_shape = "ovr"
dec =clf.decision_function([1]) #返回的是样本距离超平面的距离
print dec
#预测
print clf.predict([1])</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03