
相信大家在机器学习中,一定常见到;SVC,NvSVC,LinearSVC,今天我们就来看看这三者的区别。
SVC(C-Support Vector Classification):
支持向量分类,基于libsvm实现的,数据拟合的时间复杂度是数据样本的二次方,这使得他很难扩展到10000个数据集,当输入是多类别时(SVM最初是处理二分类问题的),通过一对一的方案解决,例如:
SVC参数解释 (1)C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0; (2)kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是"RBF"; (3)degree:if you choose 'Poly' in param 2, this is effective, degree决定了多项式的最高次幂; (4)gamma:核函数的系数('Poly', 'RBF' and 'Sigmoid'), 默认是gamma = 1 / n_features; (5)coef0:核函数中的独立项,'RBF' and 'Poly'有效; (6)probablity: 可能性估计是否使用(true or false); (7)shrinking:是否进行启发式; (8)tol(default = 1e - 3): svm结束标准的精度; (9)cache_size: 制定训练所需要的内存(以MB为单位); (10)class_weight: 每个类所占据的权重,不同的类设置不同的惩罚参数C, 缺省的话自适应; (11)verbose: 跟多线程有关,不大明白啥意思具体; (12)max_iter: 最大迭代次数,default = 1, if max_iter = -1, no limited; (13)decision_function_shape : ‘ovo’ 一对一, ‘ovr’ 多对多 or None 无, default=None (14)random_state :用于概率估计的数据重排时的伪随机数生成器的种子。 ps:7,8,9一般不考虑。 from sklearn.svm import SVC import numpy as np X= np.array([[-1,-1],[-2,-1],[1,1],[2,1]]) y = np.array([1,1,2,2]) clf = SVC() clf.fit(X,y) print clf.fit(X,y) print clf.predict([[-0.8,-1]])
NuSVC(Nu-Support Vector Classification.):
核支持向量分类,和SVC类似,也是基于libsvm实现的,但不同的是通过一个参数空值支持向量的个数
NuSVC参数 nu:训练误差的一个上界和支持向量的分数的下界。应在间隔(0,1 ]。 其余同SVC ''' import numpy as np X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) from sklearn.svm import NuSVC clf = NuSVC() clf.fit(X, y) print clf.fit(X,y) print(clf.predict([[-0.8, -1]]))
LinearSVC(Linear Support Vector Classification):
线性支持向量分类,类似于SVC,但是其使用的核函数是”linear“上边介绍的两种是按照brf(径向基函数计算的,其实现也不是基于LIBSVM,所以它具有更大的灵活性在选择处罚和损失函数时,而且可以适应更大的数据集,它支持密集和稀疏的输入是通过一对一的方式解决的
LinearSVC 参数解释
C:目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0;
loss :指定损失函数
penalty :
dual :选择算法来解决对偶或原始优化问题。当n_samples > n_features 时dual=false。
tol :(default = 1e - 3): svm结束标准的精度;
multi_class:如果y输出类别包含多类,用来确定多类策略, ovr表示一对多,“crammer_singer”优化所有类别的一个共同的目标
如果选择“crammer_singer”,损失、惩罚和优化将会被被忽略。
fit_intercept :
intercept_scaling :
class_weight :对于每一个类别i设置惩罚系数C = class_weight[i]*C,如果不给出,权重自动调整为 n_samples / (n_classes * np.bincount(y))
verbose:跟多线程有关,不大明白啥意思具体
from sklearn.svm import LinearSVC
X=[[0],[1],[2],[3]]
Y = [0,1,2,3]
clf = LinearSVC(decision_function_shape='ovo') #ovo为一对一
clf.fit(X,Y)
print clf.fit(X,Y)
dec = clf.decision_function([[1]]) #返回的是样本距离超平面的距离
print dec
clf.decision_function_shape = "ovr"
dec =clf.decision_function([1]) #返回的是样本距离超平面的距离
print dec
#预测
print clf.predict([1])</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20