
最近与数据分析相关的岗位越来越火热,各行各业对于准也数据分析师的需求也不断扩大,但是还有一些人对于数据分析师并不了解,不知道数据分析师是做什么的?对企业来说有什么用?小面小编就给大家分享一下数据分析师和企业那些事儿。
企业数据分析师的最终目标是实现业务的增长,这就意味着企业数据分析师不仅要技术过硬,还必须对业务有着深入的了解,通过各种数据分析方法和思维,来发现企业经营中的问题,辅助企业的经营决策。
企业数据分析师的作用主要有以下几点:
1.帮助企业建立可评估的量化指标
无论是在生活还是工作中,我们大多数人往往都会以主观的感受来评估一个人或者一件事,企业数据分析师擅长用“数据说话”,通过对数据的统计、转化,可以将企业的员工、项目等转化为具体的经营指标和数字,如获客数、转化率、复购率等等,企业经营者可以通过不同部门的指标达成情况,来掌握整个公司和各个部门的经营情况。
2.帮助企业发现业务机会
帮助企业发现业务机会主要是指利用数据查找发现人们思维上的盲点,进而发现新的业务机会的过程。在分析数据的过程中数据分析师研究出来了很多的业务增长理论和方法,包含有渠道分析、AARRR模型、漏斗模型、相关性分析等等理论,运用这些理论,对于行业的整体竞争环境以及发展方向做进一步了解和预测,进而扩展出更多的功能,使得发现更多的商业机遇。
3.创造新的商业价值模式方面
一般来说创造新的商业价值模式就是在数据价值的基础上形成新的商业模式,将数据价值直接转化为商业模式或离商业更近的过程。这一点就是数据分析的作用的最高体现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13