京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从去年入职马上金融策略数据分析师到今日,已有半年时间。通过半年时间的工作锻炼,从刚入职的啥也不懂的萌新到如今工作清单一大堆的职场老司机。这个转变的过程积累了很多感想与经验与大家分享一下。
a.工作内容
我所在小组的工作主要是做二次营销,在公司存量客户的基础上选择我们风控认为比较优质的客户发放现金贷产品。我的工作是筛选,工作框架是通过筛选将公司客户信息汇总到一张表中,之后通过筛选规则→评分卡→授予额度→推送到活动系统中。
工作框架:
推送到活动系统之后营销部门会对客户进行发短信、打电话等方式对客户进行营销,有意向的客户申请我们的产品,之后通过审批确定是否发放offer。修改筛选规则,调整评分卡,调整授予额度是我的工作日常。
b.工作挑战
1.虽然在学校学习过sql代码,但工作涉及到的代码少者5,6行,多者上百行,循环嵌套7,8层。一次产品设计的代码1000多行,刚入职初次接触,压力山大。
2.工作中由于给用户发放不同的offer对应不同的任务,需要对每日任务进行一个监控。监控每日给用户发放的offer数量是否异常,总的平均额度是否变化。以前是靠个人经验判断名单量是否异常,随着业务量越来越大,任务数量越来越多,观察起来越来麻烦,自己就想能否开发出一个指标判断名单量异常如同豆瓣分判断电影的好坏一样,这样节省大量时间并且可以规避人为判断主观影响,得出的结论更加理性量化。
3.理解业务。数据分析师的主要职能通过数据发现问题解决问题,但前提就是你要理解公司业务,掌握解决方法。解决方法在cda学习已经了解过很多,但实际业务对应不同的公司不同的部门就千差万别。比如:工作中领导会让你限制某个渠道的产品,评价某次策略上线的影响,打捞一些沉默客户等等,这些全于实际业务相关,但公司却不会给你提供相关的说明或者介绍,空有一些软件操作技能无法施展。
c.解决思路
由于自己是转行到数据分析职位,在cda学习的sql代码只能说熟悉不太熟练,需要自己在这方面死磕代码,不断长时间重复性的练习写sql,遇到长段的比较复杂的代码需虚心请教前辈,下班之余一起吃个饭,增进下感情,对自己理解代码及工作有很大帮助。针对工作挑战2,自己思考到判断每天任务的名单量是否异常主要是与之前的名单量做比较,看到底多多少还是降多少,根据这个值然后得出结论。这就可以用到在cda学习的统计学方法,如均值,方差,归一化等方法,然后进行一系列的加工,比较,调整参数,得出一个指标粗来。经过一周时间尝试,最终得出一个指标,评价名单量波动的异常。5星为异常波动。4星为较多波动,3星以下为正常波动。
衡量名单量波动指标(grade)
数据分析师通过数据发现问题解决问题,业务是重要的支撑点。在这方面自己是通过请教周围的同事,拿着小本本记他们简述的内容,不清楚的网络搜索。虽然看起很简单,但过程很繁琐,可能问一个同事他不知道,需要通过同事介绍去问与下一个同事,有的可能给你错误的解答,是一个需要耐心逐步积累的过程。
结语
很庆幸自己的转行之路,也很高兴在cda的学习之旅。数据分析师的待遇比普通岗位要高很多,发展前景也很广,但这个职位设计的知识,原理也很复杂,需要自己动很多脑子,不断思考,上文提到的工作困难只是实际工作的一瞥。祝福大家选择了数据分析岗位后,坚定走下去,没有风雨怎能见彩虹。
张爱玲说,"出名要趁早”,转行也得要趁早,无论是你初出茅庐的大学毕业生,还是在职场打拼好多年的经验老手,倘若你在当下的状态已经看不到什么继续走下去的希望或动力,或者遭遇职业瓶颈期,想重新换一下活法,那就勇敢地踏出第一步吧,万事开头难,但有志者事竟成。岁月从不亏待早早做准备的人,更不会亏待辛勤付出的人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27