
从去年入职马上金融策略数据分析师到今日,已有半年时间。通过半年时间的工作锻炼,从刚入职的啥也不懂的萌新到如今工作清单一大堆的职场老司机。这个转变的过程积累了很多感想与经验与大家分享一下。
a.工作内容
我所在小组的工作主要是做二次营销,在公司存量客户的基础上选择我们风控认为比较优质的客户发放现金贷产品。我的工作是筛选,工作框架是通过筛选将公司客户信息汇总到一张表中,之后通过筛选规则→评分卡→授予额度→推送到活动系统中。
工作框架:
推送到活动系统之后营销部门会对客户进行发短信、打电话等方式对客户进行营销,有意向的客户申请我们的产品,之后通过审批确定是否发放offer。修改筛选规则,调整评分卡,调整授予额度是我的工作日常。
b.工作挑战
1.虽然在学校学习过sql代码,但工作涉及到的代码少者5,6行,多者上百行,循环嵌套7,8层。一次产品设计的代码1000多行,刚入职初次接触,压力山大。
2.工作中由于给用户发放不同的offer对应不同的任务,需要对每日任务进行一个监控。监控每日给用户发放的offer数量是否异常,总的平均额度是否变化。以前是靠个人经验判断名单量是否异常,随着业务量越来越大,任务数量越来越多,观察起来越来麻烦,自己就想能否开发出一个指标判断名单量异常如同豆瓣分判断电影的好坏一样,这样节省大量时间并且可以规避人为判断主观影响,得出的结论更加理性量化。
3.理解业务。数据分析师的主要职能通过数据发现问题解决问题,但前提就是你要理解公司业务,掌握解决方法。解决方法在cda学习已经了解过很多,但实际业务对应不同的公司不同的部门就千差万别。比如:工作中领导会让你限制某个渠道的产品,评价某次策略上线的影响,打捞一些沉默客户等等,这些全于实际业务相关,但公司却不会给你提供相关的说明或者介绍,空有一些软件操作技能无法施展。
c.解决思路
由于自己是转行到数据分析职位,在cda学习的sql代码只能说熟悉不太熟练,需要自己在这方面死磕代码,不断长时间重复性的练习写sql,遇到长段的比较复杂的代码需虚心请教前辈,下班之余一起吃个饭,增进下感情,对自己理解代码及工作有很大帮助。针对工作挑战2,自己思考到判断每天任务的名单量是否异常主要是与之前的名单量做比较,看到底多多少还是降多少,根据这个值然后得出结论。这就可以用到在cda学习的统计学方法,如均值,方差,归一化等方法,然后进行一系列的加工,比较,调整参数,得出一个指标粗来。经过一周时间尝试,最终得出一个指标,评价名单量波动的异常。5星为异常波动。4星为较多波动,3星以下为正常波动。
衡量名单量波动指标(grade)
数据分析师通过数据发现问题解决问题,业务是重要的支撑点。在这方面自己是通过请教周围的同事,拿着小本本记他们简述的内容,不清楚的网络搜索。虽然看起很简单,但过程很繁琐,可能问一个同事他不知道,需要通过同事介绍去问与下一个同事,有的可能给你错误的解答,是一个需要耐心逐步积累的过程。
结语
很庆幸自己的转行之路,也很高兴在cda的学习之旅。数据分析师的待遇比普通岗位要高很多,发展前景也很广,但这个职位设计的知识,原理也很复杂,需要自己动很多脑子,不断思考,上文提到的工作困难只是实际工作的一瞥。祝福大家选择了数据分析岗位后,坚定走下去,没有风雨怎能见彩虹。
张爱玲说,"出名要趁早”,转行也得要趁早,无论是你初出茅庐的大学毕业生,还是在职场打拼好多年的经验老手,倘若你在当下的状态已经看不到什么继续走下去的希望或动力,或者遭遇职业瓶颈期,想重新换一下活法,那就勇敢地踏出第一步吧,万事开头难,但有志者事竟成。岁月从不亏待早早做准备的人,更不会亏待辛勤付出的人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19