
从去年入职马上金融策略数据分析师到今日,已有半年时间。通过半年时间的工作锻炼,从刚入职的啥也不懂的萌新到如今工作清单一大堆的职场老司机。这个转变的过程积累了很多感想与经验与大家分享一下。
a.工作内容
我所在小组的工作主要是做二次营销,在公司存量客户的基础上选择我们风控认为比较优质的客户发放现金贷产品。我的工作是筛选,工作框架是通过筛选将公司客户信息汇总到一张表中,之后通过筛选规则→评分卡→授予额度→推送到活动系统中。
工作框架:
推送到活动系统之后营销部门会对客户进行发短信、打电话等方式对客户进行营销,有意向的客户申请我们的产品,之后通过审批确定是否发放offer。修改筛选规则,调整评分卡,调整授予额度是我的工作日常。
b.工作挑战
1.虽然在学校学习过sql代码,但工作涉及到的代码少者5,6行,多者上百行,循环嵌套7,8层。一次产品设计的代码1000多行,刚入职初次接触,压力山大。
2.工作中由于给用户发放不同的offer对应不同的任务,需要对每日任务进行一个监控。监控每日给用户发放的offer数量是否异常,总的平均额度是否变化。以前是靠个人经验判断名单量是否异常,随着业务量越来越大,任务数量越来越多,观察起来越来麻烦,自己就想能否开发出一个指标判断名单量异常如同豆瓣分判断电影的好坏一样,这样节省大量时间并且可以规避人为判断主观影响,得出的结论更加理性量化。
3.理解业务。数据分析师的主要职能通过数据发现问题解决问题,但前提就是你要理解公司业务,掌握解决方法。解决方法在cda学习已经了解过很多,但实际业务对应不同的公司不同的部门就千差万别。比如:工作中领导会让你限制某个渠道的产品,评价某次策略上线的影响,打捞一些沉默客户等等,这些全于实际业务相关,但公司却不会给你提供相关的说明或者介绍,空有一些软件操作技能无法施展。
c.解决思路
由于自己是转行到数据分析职位,在cda学习的sql代码只能说熟悉不太熟练,需要自己在这方面死磕代码,不断长时间重复性的练习写sql,遇到长段的比较复杂的代码需虚心请教前辈,下班之余一起吃个饭,增进下感情,对自己理解代码及工作有很大帮助。针对工作挑战2,自己思考到判断每天任务的名单量是否异常主要是与之前的名单量做比较,看到底多多少还是降多少,根据这个值然后得出结论。这就可以用到在cda学习的统计学方法,如均值,方差,归一化等方法,然后进行一系列的加工,比较,调整参数,得出一个指标粗来。经过一周时间尝试,最终得出一个指标,评价名单量波动的异常。5星为异常波动。4星为较多波动,3星以下为正常波动。
衡量名单量波动指标(grade)
数据分析师通过数据发现问题解决问题,业务是重要的支撑点。在这方面自己是通过请教周围的同事,拿着小本本记他们简述的内容,不清楚的网络搜索。虽然看起很简单,但过程很繁琐,可能问一个同事他不知道,需要通过同事介绍去问与下一个同事,有的可能给你错误的解答,是一个需要耐心逐步积累的过程。
结语
很庆幸自己的转行之路,也很高兴在cda的学习之旅。数据分析师的待遇比普通岗位要高很多,发展前景也很广,但这个职位设计的知识,原理也很复杂,需要自己动很多脑子,不断思考,上文提到的工作困难只是实际工作的一瞥。祝福大家选择了数据分析岗位后,坚定走下去,没有风雨怎能见彩虹。
张爱玲说,"出名要趁早”,转行也得要趁早,无论是你初出茅庐的大学毕业生,还是在职场打拼好多年的经验老手,倘若你在当下的状态已经看不到什么继续走下去的希望或动力,或者遭遇职业瓶颈期,想重新换一下活法,那就勇敢地踏出第一步吧,万事开头难,但有志者事竟成。岁月从不亏待早早做准备的人,更不会亏待辛勤付出的人!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04