cda

全国校区

您的位置:首页 > 大数据时代 > 金融领域的大数据来源及其应用

金融领域的大数据来源及其应用

2018-09-03


大数据时代,大数据分析与应用在各行各业雷厉风行,发挥着自己必不可少和举足轻重的作用,越来越多的行业开始涉足大数据分析与应用,都试图从中获得更多和更大的商机秘密和经济效益。对于大数据分析与应用,需求最广且要求最严格的,当属金融领域了。如今的互联网金融发展得风生水起,先不管当中是否有云龙混杂的现象,但看表面的繁华虚浮盛况,就可知大数据分析与应用的受欢迎和受重视程度。作为一名数据分析师,如果可以在金融领域发觉大数据的商业价值,那么你对于公司的贡献可是非常巨大的。那么作为数据分析师的你的工作待遇和发展前景,也是乐观美好的。不过说到发觉大数据的内在价值及其对公司的经济效益和决策效率的支撑,可靠的数据来源是非常关键的。下面给大家说手金融领域的大数据来源及其应用,让大家好好了解了解当下的大数据来源,都是从何处来,应用到何处去……



有的人认为大数据确实是一个新兴的产业机会,有的人认为大数据就是一个炒作概念,是一些科技公司和咨询公司的商业行为。其实不管大家的观点如何,大数据的产业机会正在到来,如果没有大数据概念的兴起,数据营销,数据分析、数据决策就不能如此快速发展。

在大数据分析一书中,迈克尔.梅内里介绍了商业技术应用发展历史。从技术发展时间轴来看,80年代之前是企业ERP时代,80年代到90年代进入客户关系管理时代,90年代到2000年进入电子商务年代,2000年到2010年逐步进入大数据分析时代。在没有进入大数据分析年代前,所有的商业技术的出发点是用于提升效率,通过自动化工具代替手工流程,无论是应用于供应链的ERP,还是应用客户管理管理的CRM其目的都是帮助企业提高内部的运营效率,降低库存,降低生产费用,快速处理客户建议,提高客户满意度,电子商务的应用是打破生产者和消费者之间的信息壁垒,减少中间的销售环节,本质还是提高商品的流通效率,降低销售成本。

大数据分析给企业带来的不仅仅是效率的提升,还有决策支持和差异化竞争。利用大数据分析技术,商家可以定位自己的客户,将产品以最低的营销成本送达到客户。同时商家也可以通过大数据分析了解客户要求,开发出满足客户需要的产品。大数据分析还可以降低企业运营成本,降低风险,节省时间,预防欺诈,提供自助服务等。其带给企业不仅仅是效率的提升还包含预测分析、决策支持、优化、模拟仿真等等。

广告、媒体、 电商、交通、电信、金融、医疗是数据应用较早的几个行业,由于涉及到个人隐私和公共安全的原因,很多数据还不能够公开,各个行业只能采用自己的数据进行商业应用,大数据整体协同效应不明显,但是还是可以看到其中的商业价值。

本文主要讨论金融行业的数据来源和应用,介绍金融行业,数据来源于哪里,自身具有哪些数据,需要哪些外部数据,这些数据的价值,如何获得和利用这些数据。数据来源是大数据在金融行业应用的基础。

金融行业的数据可以分为三大类别,并依据各个类别的特点来探讨其应用。本文举例以银行业为主,证券和保险也可以参考。金融行业的数据大多数来源于客户自身信息以及其金融交易行为。



一般来讲数据在金融行业可以分为以下三大类。

1、客户信息数据

可以称为基础数据,主要是指描述客户自身特点的数据。

个人客户信息数据包括:个人姓名,性别,年龄,身份信息,联系方式,职业,生活城市,工作地点,家庭地址,所属行业,具体职业,收入,社会关系,婚姻状况,子女信息,教育情况,工作经历,工作技能,账户信息,产品信息,个人爱好等等。
企业客户信息数据包括:企业名称,关联企业,所属行业,销售金额,注册资本,账户信息,企业规模,企业地点,分公司情况,客户和供应商,信用评价,主营业务,法人信息等等。
银行业这些信息来源于多个系统,包括客户管理系统,核心银行系统,贸易系统,保理系统,融资管理系统,信息卡系统、信贷管理系统等。银行应将这些割裂的数据整合到大数据平台,形成全局数据。对银行所有客户数据进行整合,按照自身需要进行归类和打标签,由于都是结构化数据因此有利于数据分析。

金融行业可以将这些信息集中在大数据管理平台,对客户进行分类,依据其他的交易数据,进行产品开发和决策支持。例如可以依据客户年龄、职业、收入、资产等,针对部分群体推出信用消费,抵押贷款,教育储蓄,投资产品、养老产品等,为客户提供针对于人生不同阶段的金融服务。也可以检验已有产品的占有率,推广效果,以及采集客户的自身产品需求。企业客户也是同样道理,没有数据分析之前,产品开发依赖于产品经理自身能力和风险偏好,或者模仿行业其他竞争对手的产品,有了数据分析之后管理层可以决定推出何种产品,了解到产品实际销售情况,针对特定用户进行推广,降低营销费用,有利于降低风险。因此客户信息数据主要用于精准营销,产品设计,产品反馈、降低风险等。

2、交易信息数据

交易信息也可以称为支付信息,主要是指客户通过渠道发生的交易以及现金流信息。

个人客户交易信息:包括工资收入,其他收入,个人消费,公共事业缴费,信贷还款,转账交易,委托扣款,购买理财产品,购买保险产品,信用卡还款等

企业客户交易:包括供应链应收款项,供应链应付款项,员工工资,企业运营支出,同分公司之间交易,同总公司之间交易,税金支出,理财产品买卖,外汇产品买卖,金融衍生产品购买,公共费用支出,其他转账等

这些信息大多存在银行的渠道系统里面,如网上银行,卡系统,信用卡系统,贸易系统,保理系统,核心银行系统,保险销售平台,外汇交易系统等。这些交易数据容量巨大,必须借助于大数据技术进行分析,形成全局数据、整体数据。银行利用这些数据对个人消费者进行消费行为分析,开发产品,提供金融服务。同时也可以利用这些数据提供供应链金融服务,建立自己的商品交易生态圈。。银行也可以依据交易数据为企业提供贸易融资或设备融资服务。整合后的数据可以用于银行对企业的信用评价,交易数据可用来进行风险给管理,提前介入风险事件,降低债务违约风险。现金流和支付信息数据量很大,如果大批量采用将会造成效率下降,因此对商业需求的了解将是进行大数据分析关键,有效的数据分类和取舍将会帮助银行高效利用大数据技术。银行在采集和使用交易数据时,其采用哪些数据,通过何种形式展现,数据分析报告输入维度和权重具有极大的挑战性。



3、资产信息

资产信息主要是指客户在银行端资产和负债信息,同时也包含银行自身资产负债信息。

个人客户资产负债信息包括:购买的理财产品,定期存款,活期存款,信用贷款,抵押贷款,信用卡负债,抵押房产,企业年金等
企业客户资产负债信息包括:企业定期存款,活期存款,信用贷款,抵押贷款,担保额度,应收账款,应付账款,理财产品,票据,债券,固定资产等
银行自身端资产负债信息包括:自身资产和负债例如活期存款,定期存款,借入负债,结算负债,现金资产,固定资产,贷款证券投资等。

资产数据主要来源于核心银行系统和总帐系统,资产数据可以用于银行完整的风险视图,帮助银行对进行有效风险管理,通过资产数据的集中整合,针对每一个企业客户或个人客户,银行可以有效快速对客户进行风险评估和风险管理,提高客户体验,并结合现金流和交易数据,供应链数据为客户提供定制的理财产品或贷款产品。银行也可以利用自身资产负债信息来提高资金利用率,通过调整资产负债,来降低资金成本,提高资本收益。银行还可以对客户及自身资产负债配置信息进一步分析,通过调整产品来解决存款和贷款之间的时间匹配问题,降低流动性风险,提高资金利用效率。资产信息主要用于银行自身风险管理和资本效率提升,同时也可以帮助银行通过产品推广来合理调整资产负债,提高自身盈利能力。

除了上面提到的三大类银行自身的数据之外,如果银行进行大数据分析,为了赢得差异化竞争,就必须考虑其他的数据输入,这些数据是银行自身不具有的,但是对其数据分析和决策起到了很重要的作用。银行可以采用同大数据厂商合作的方式,通过自身平台来采集数据或购买第三方数据。前提是银行自身必须了解且业务需求和数据需求,借助于其他的数据平台和技术来完善自身的大数据平台和分析技术。




下面简单介绍一下银行进行大数据分析时需要的其他数据。

1、行为数据

主要是指客户在互联网上的行为数据,包括APP应用上的点击数据,社交媒体和社交网络数据,电商平台的消费数据。银行可以购买这些用数据来完善自己的大数据分析输入,行为数据作为补充数据来为银行数据营销,产品设计,数据反馈,风险管理提供数据支持。但是行为数据可能涉及到消费者的个人隐私,因此银行在购买这行数据讲应该小心,建议和数据拥有者合作并得到客户的授权。

2、位置信息

主要是指银行客户使用的移动设备位置信息,客户自己所处的地理空间数据。包括其多频率的位置往返数据。银行可以利用其进行精准营销,结合商家推出优惠服务,同行也可以利用其信息提供理财产品介绍会,针对特殊人群的财富管理会议,为新增网点还是撤销网点提供决策支持等

3、供应链数据

主要是指企业同上下游企业之间的商品或货物的交易信息,银行自身的供应链信息不全,无法完全支撑对企业的供应链金融服务。银行需要和具有这些信息的电商平台例如阿里,京东等合作,根据完整的供应链信息来提供金融服务。

4、商业数据

主要是指经过分析整理的研究数据,包括消费者行为数据,行业分析报告,竞争与市场数据,宏观经济数据,特殊定制数据等。银行可以利用第三方的专业分析报告来制定自身风险偏好,同时为自身的大数据分析,产品开发,风险管理提供决策支持。

总之,银行在实施大数据战略时,应该了解银行内部都有哪些数据,需要对数据进行归类,通过大数据技术进行提取和取舍,了解这些数据背后代表着哪些商业价值,银行自身的大数据需求在哪里,还需要哪些外部数据,如何同已有数据进行整合。银行自身丰富的数据就是大数据应用的基础,大数据分析可以从银行自身数据出发,依据商业需求进行分析,为决策提供支持。外部数据的引入需要在大数据模型搭建过程中进行考虑,作为参考数据为大数据分析提供辅助支持作用。


完 谢谢观看

分享
收藏

OK