
在你的身边,星巴克(StarBauks)的身影大概越来越多吧。据资料表明,从2011年到2015年,星巴克在华新开了超过1300家店,门店总数达到1811家。呈现出逐渐加速的态势,此后五年内,星巴克计划每年在中国投资增设500家门店,预计2019年星巴克在华门店总数量达到3400家。
近日,正好从kaggle网站下载了星巴克的全球布点数据(Starbucks Locations Worldwide),让我们以国内为据点,通过大数据分析,看一下星巴克与民生经济之间的千丝万缕的联系。
众所周知,星巴克作为小资的代表,一向出现在大城市的热门地段,例如繁华的购物中心,高尚写字楼等等,受众也是有一定经济能力和教育背景的人群。所以,当我们看到上海以551家星巴克雄踞排名第一的城市/省份,这大概也不奇怪了。
以省份而言,接下来是江苏,浙江,广东等经济发达省份,星巴克的数量也占比甚高。若是以城市排名,北京以234家排名城市第二,而杭州为122家,深圳113家,广州106家。
北上广深,此时应该为北上杭深广了吧。
有人说,你喝的每一杯星巴克都有大数据的影子。确实,星巴克在选址方面,运用了大量数据的指标分析。星巴克全球公司会提供标准化的数据表格,利用内部数据平台,对预想店面附近的零售商圈,公共交通,以及人口分布作出评估,这是为了防止在不适宜的地点开设门店,导致错误决策和经济损失。
因此,星巴克选择门店的标准,也可以反映出所在地的经济能力。例如上面的省份排名,我们可以作出全国各省的星巴克分布热力图,来看个端倪:
由图中可见,星巴克的分布确实类似中国gdp,东西部发展不均。在西部某些省份没有店铺(比如西藏,去旅游的老外就忍忍吧。)在有店铺的省份中,宁夏和甘肃是最少的。
北上深广且不论,本来这里的小资就是星巴克的消费大户,但如何看出二三线城市的发展潜力,从星巴克店铺的布局也可见一斑吧?在沿海地区,即使是我们不熟悉的城市,星巴克的店铺甚至已经超过了某些内陆省份。下面,我们就以江苏和浙江这两个大户,分别细看一下它们的星巴克城市分布:
江苏省以苏州领先,南京次之
而浙江省以杭州遥遥领先,把第二位宁波远远抛在了后面。嗯,如果一定要比较的话,似乎江苏省的城市分布更为平均一些呢。马云老大,你要带动一下周边城市哦!
因为自己居住在广州,所以把比例再度细化,来看一下广州的星巴克具体分布。原数据库中,提供的经纬度只到小数点后2位,如果是全国地图的话,应该倒是够用。但落到市区地图上非常不准确,所以需要用店铺地址,连接百度API,通过程序重新获取。
星巴克广州分布
从上图可以看出,星巴克大多集中在广州比较热门的地方,在天河北中心广场到珠江新城的中轴线上,犹为集中。此外在地铁站点和临江两岸,也有不少分布。此外,就是白云区凯德万达等商区中心,也是一个小热点。
和星巴克并行的品牌,在本市还有costa coffee,我个人也满喜欢的。那就获取广州的costa分店来看一看吧。这家的数量少很多,在深圳有20家,广州15家,将其在广州的位置落子后(红色方块位置),发现主要也是集中在珠江新城一带。相对于周边环伺的浅蓝色星巴克影子,嗯,小朋友还要加油啊!
costa和星巴克分布
再扩展到全国来看(这个数据不用爬,在官网就有),分布也是比较不均匀。在帝都居然是一家都木有的。其余来说,基本也是按照经济规律分布,上海特别的遥遥领先,是品牌高层的偏爱,还是有特殊的地理优势呢?
回到广州的星巴克,再度进行店铺商区的粗略分类,之所以说粗略,是因为采用了店铺地址所在的建筑进行评估,比如店子在某写字楼,就算入办公,虽然它旁边也可能有一家酒店。如果裙楼是商业,上面是办公楼,那么就算如混合。
大致分类如下:
办公,例如越秀区的交易广场,14家;
住宅,例如保利香槟花园,14家;
混合,例如太古汇这类,11家;
交通枢纽,5家,广州东站和南站各1家,白云机场3家(是不是坐飞机的人比较高大上一点?);
酒店,4家,比如中国大酒店(这不很奇怪,毕竟很多大酒店也有自己的咖啡厅)。
遥遥领先的是纯购物商圈,例如正佳广场、万达广场、天河城等。看来广州的星巴克定位,主打人群还是购物和周末休闲呀。
以购物商圈而言,虽然有大量人流,但竞争也比较激烈,星巴克虽然选址成功,但也有痛点尚未解决,比如:
近年国人饮料的喜好也转向贡茶、喜茶等品牌。如何以较贵的价格吸引shopping人群;
随着电商平台兴起,购物广场不免部分转向萧条,重点投入在购物商圈,是否也会跟着中枪,接下来,会否加大在写字楼和住宅等的投入?
星巴克目前还是傲娇的没有外送,也没有正式和外送平台合作(美团上目前有一家第三方代购,58起价),随着平台外卖的兴起+现在的暑热天气,有没有错过一波风口?
以上只是根据星巴克部分数据,做一些好玩的分析。感兴趣的话还可以继续挖掘,比如其他城市的具体布局,比如各地老外的比例是否影响了星巴克的数量?数据分析的吸引之处,就在于用精确的数字,来印证脑洞大开的奇想。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07