数据分析师发展前景如何,毫无疑问是乐观而且持续乐观的。于个人而言,无论大局势的数据分析师发展前景是好是坏,对于我们个人而言,关系其实不是很大,毕竟能力才是你前行的最好资本。面对如今发展得如火如荼的大数据及大数据分析,还有充斥着各种各样的数据分析师证书,我们不禁疑惑:是我们驾驭着大数据,还是大数据驾驭着我们?对于未来,我们是更好地利用大数据为我们个人服务,还是依赖于大数据而毫无自己的主观能动性。下面,一篇关于“未来如何更好地驾驭大数据”,告诉你,未来我们应该如何更好地驾驭大数据,让大数据扮演好为我们人类服务的角色。
到2018年全球大数据方面的开支将达1140亿美元,是5年前的3倍;到2020年全球大数据规模将达44ZB(泽字节),是2013年的10倍。下一波大数据浪潮即将来袭,但是并没有多少组织为此做好准备。如果应对措施不当,你可能就不是弄潮的那个,而是被浪尖打翻的那个。如何为驾驭大数据做好准备呢?请看Crewspark CEO Cameron Sim的文章。
1140亿美元。这是2018年全球组织在大数据方面的开销,仅仅5年的时间就增长了300%以上。但是这些投入有多少是值得的呢?
过去10年,我们目睹了大数据管理新方法的广泛应用,如MapReduce、供大规模存储使用的非模式化数据库,以及用于存储和处理的Hadoop、Storm和Spark等。但是大数据的使用不仅仅是特定平台或范例的部署而已:理想情况下这意味着公司对数据的建构和组织要如何进行彻底的重新设计。
但据调查发现,目前还没有多少组织为新的数据平台和能力做好基本准备。只有35%的组织拥有了“健壮的数据捕捉、管理、验证及保存流程”,更有67%“缺乏衡量定义明确的大数据行动成功的标准。”那些大数据解决方案基本都是被动集成进来的。
但时间可不等人,根据2014年IDC的报告,到2020年,全球的数据总量将达44ZB,整整是2013年的10倍。面对着下一波的数据大爆发,那些未做好准备的公司将可能就会有背负运营和技术双重债务的风险,并因数据落后而被淘汰出局。
具体而言,这些风险体现在以下几个方面:
企业丧失透明度
业界将面临大规模的技能短缺问题——很少有IT专业人士有经验管理大规模的大数据平台。根据麦肯锡的分析,到2018年,美国将出现150万名有能力做出基于数据决策的经理。为了缩短这一鸿沟,麦肯锡估计企业将需要把数据和分析预算的50%投入到一线经理的培训上面。但是还没有多少公司意识到这一点。
随着数据需求的扩大,如果对信息管理缺乏深刻理解,对数据扩展性缺乏最佳实践,那么在管理数据驱动的系统时就会遭遇到重大挑战。而糟糕的运营透明度会导致企业很难识别出数据何时不准确和无意义,甚至连关键报表和指标是否正确运行都不知道。理清这些错综复杂并对数据提出正确的问题将成为IT人员的必备技能。否则就会缺乏对企业运营的可视性,无法有效做出知情决策并削弱企业的竞争优势。
人工成本飙升
据估计2014年时数据科学家50-80%的工作时间花在了数据集清理和处理上。近期公司往往倾向把数据准备工作的自动化外包给离岸或近岸的数据专家。对CloudFactory、MobileWorks及Samasource这类微工作平台的需求已经爆发,据估计,到2018年这类业务的规模将达到50亿美元。
但是外包无法规模满足需求。鉴于未来的数据量将达到44ZB,数据的这种快速增长会需要成千上万具备长期可行的解决方案的离岸或近岸外包团队。而任何可持续的解决方案都离不开显著的自动化。
通信障碍
现在企业间的交互依靠的是经过组织的数据,但与未来20年发生的事情相比,这种组织数据的过程将会显得苍白无力。未来将会出现新的企业数据网络标准以及相应的算法和元数据。未能参与到这一全球数据市场的公司将无法利用市面上销售的这些数据产品。
全球各个领域都在发生这种朝着大规模商业数据共享的演变。比方说,在要求第三方验证其研究的压力之下,像葛兰素史克这样的药企最近都拟定了更广泛共享实验数据的计划。奥巴马总统已经要求技术公司共享潜在黑客威胁的数据。Forrester最近的一项研究预测,数据服务将成为2015年的主流产品。按照这种节奏,10年后大数据的有效使用不仅会成为市场致胜的关键,而且还是参与市场的先决条件。
这些风险就像一个个大数据的定时炸弹,对你构成严峻挑战。不过如果你采取下面的三个步骤,危险也许就可以解除。
1、不要走一步看一步
为了确保未来的分析能力,企业必须现在就开始投资一个能够快速有效管理新数据集的平台。应该考虑业务未来在数据摄入与联合方面如何运作,如何从传统的系统过渡到端到端的自动化的数据与分析。
其核心是这个平台要能够有目的地、小心地、透明地扩充,而不是光收集数据,但对这些数据使用却没有明确的目的,或者在数据的解析上不做投入。
2、再痛也要重建旧数据应用架构
许多公司过度依赖维护开销很高的旧系统,导致升级或作出战略变革的优先性被贬低。甚至一些大公司也是如此,比方说三星的SmartHub TV是跑在云上面的,但是因为顾忌迁移成本,其所有的金融交易仍在本地处理。
其结果就是在许多组织里面数据形成了一个个以部门为单位的烟囱。某些数据,比方说社交媒体方面的信息,甚至还保存在公司以外,这又增加了一层复杂性。要想大数据创新,企业必须以提高跨部门运营透明度为焦点对旧的数据应用进行翻新。
3、模块化、多颗粒度的数据管理
要把裸数据和洞察数据塑造成模块化、组织得当、具备各种颗粒度的实体,这一步做得越深入,越能够有效的利用商业洞察,同时还能在永远变化的大数据形势中保持敏捷的反应力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03