
数据分析师发展前景如何,毫无疑问是乐观而且持续乐观的。于个人而言,无论大局势的数据分析师发展前景是好是坏,对于我们个人而言,关系其实不是很大,毕竟能力才是你前行的最好资本。面对如今发展得如火如荼的大数据及大数据分析,还有充斥着各种各样的数据分析师证书,我们不禁疑惑:是我们驾驭着大数据,还是大数据驾驭着我们?对于未来,我们是更好地利用大数据为我们个人服务,还是依赖于大数据而毫无自己的主观能动性。下面,一篇关于“未来如何更好地驾驭大数据”,告诉你,未来我们应该如何更好地驾驭大数据,让大数据扮演好为我们人类服务的角色。
到2018年全球大数据方面的开支将达1140亿美元,是5年前的3倍;到2020年全球大数据规模将达44ZB(泽字节),是2013年的10倍。下一波大数据浪潮即将来袭,但是并没有多少组织为此做好准备。如果应对措施不当,你可能就不是弄潮的那个,而是被浪尖打翻的那个。如何为驾驭大数据做好准备呢?请看Crewspark CEO Cameron Sim的文章。
1140亿美元。这是2018年全球组织在大数据方面的开销,仅仅5年的时间就增长了300%以上。但是这些投入有多少是值得的呢?
过去10年,我们目睹了大数据管理新方法的广泛应用,如MapReduce、供大规模存储使用的非模式化数据库,以及用于存储和处理的Hadoop、Storm和Spark等。但是大数据的使用不仅仅是特定平台或范例的部署而已:理想情况下这意味着公司对数据的建构和组织要如何进行彻底的重新设计。
但据调查发现,目前还没有多少组织为新的数据平台和能力做好基本准备。只有35%的组织拥有了“健壮的数据捕捉、管理、验证及保存流程”,更有67%“缺乏衡量定义明确的大数据行动成功的标准。”那些大数据解决方案基本都是被动集成进来的。
但时间可不等人,根据2014年IDC的报告,到2020年,全球的数据总量将达44ZB,整整是2013年的10倍。面对着下一波的数据大爆发,那些未做好准备的公司将可能就会有背负运营和技术双重债务的风险,并因数据落后而被淘汰出局。
具体而言,这些风险体现在以下几个方面:
企业丧失透明度
业界将面临大规模的技能短缺问题——很少有IT专业人士有经验管理大规模的大数据平台。根据麦肯锡的分析,到2018年,美国将出现150万名有能力做出基于数据决策的经理。为了缩短这一鸿沟,麦肯锡估计企业将需要把数据和分析预算的50%投入到一线经理的培训上面。但是还没有多少公司意识到这一点。
随着数据需求的扩大,如果对信息管理缺乏深刻理解,对数据扩展性缺乏最佳实践,那么在管理数据驱动的系统时就会遭遇到重大挑战。而糟糕的运营透明度会导致企业很难识别出数据何时不准确和无意义,甚至连关键报表和指标是否正确运行都不知道。理清这些错综复杂并对数据提出正确的问题将成为IT人员的必备技能。否则就会缺乏对企业运营的可视性,无法有效做出知情决策并削弱企业的竞争优势。
人工成本飙升
据估计2014年时数据科学家50-80%的工作时间花在了数据集清理和处理上。近期公司往往倾向把数据准备工作的自动化外包给离岸或近岸的数据专家。对CloudFactory、MobileWorks及Samasource这类微工作平台的需求已经爆发,据估计,到2018年这类业务的规模将达到50亿美元。
但是外包无法规模满足需求。鉴于未来的数据量将达到44ZB,数据的这种快速增长会需要成千上万具备长期可行的解决方案的离岸或近岸外包团队。而任何可持续的解决方案都离不开显著的自动化。
通信障碍
现在企业间的交互依靠的是经过组织的数据,但与未来20年发生的事情相比,这种组织数据的过程将会显得苍白无力。未来将会出现新的企业数据网络标准以及相应的算法和元数据。未能参与到这一全球数据市场的公司将无法利用市面上销售的这些数据产品。
全球各个领域都在发生这种朝着大规模商业数据共享的演变。比方说,在要求第三方验证其研究的压力之下,像葛兰素史克这样的药企最近都拟定了更广泛共享实验数据的计划。奥巴马总统已经要求技术公司共享潜在黑客威胁的数据。Forrester最近的一项研究预测,数据服务将成为2015年的主流产品。按照这种节奏,10年后大数据的有效使用不仅会成为市场致胜的关键,而且还是参与市场的先决条件。
这些风险就像一个个大数据的定时炸弹,对你构成严峻挑战。不过如果你采取下面的三个步骤,危险也许就可以解除。
1、不要走一步看一步
为了确保未来的分析能力,企业必须现在就开始投资一个能够快速有效管理新数据集的平台。应该考虑业务未来在数据摄入与联合方面如何运作,如何从传统的系统过渡到端到端的自动化的数据与分析。
其核心是这个平台要能够有目的地、小心地、透明地扩充,而不是光收集数据,但对这些数据使用却没有明确的目的,或者在数据的解析上不做投入。
2、再痛也要重建旧数据应用架构
许多公司过度依赖维护开销很高的旧系统,导致升级或作出战略变革的优先性被贬低。甚至一些大公司也是如此,比方说三星的SmartHub TV是跑在云上面的,但是因为顾忌迁移成本,其所有的金融交易仍在本地处理。
其结果就是在许多组织里面数据形成了一个个以部门为单位的烟囱。某些数据,比方说社交媒体方面的信息,甚至还保存在公司以外,这又增加了一层复杂性。要想大数据创新,企业必须以提高跨部门运营透明度为焦点对旧的数据应用进行翻新。
3、模块化、多颗粒度的数据管理
要把裸数据和洞察数据塑造成模块化、组织得当、具备各种颗粒度的实体,这一步做得越深入,越能够有效的利用商业洞察,同时还能在永远变化的大数据形势中保持敏捷的反应力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26