
你想成为一名数据分析师,你想进入大数据分析行业,你想从事数据分析工作,但是你不想接受数据分析师培训,可以吗?
你觉得自己有很好的数学功底,你觉得自己的统计学学得非常好,你不想通过数据分析师培训,认为可以自学成才,可以吗?
生活中,好多人都是这样,对于好多事情,都停留在想象当中,而完全不付诸行动,或懒于付诸行动。认为自己能力超群,可以自学而达到绽放光彩的目的。确实,这世界上有这种人,但你觉得自己是吗?如果不参加数据分析师培训,不接受正统的数据分析师培训学习过程,你能保证,在周一到周五工作累得不想动的时候,在温暖的被窝睡着的时候,你会在周六的早上准时8点起来学习数据分析师培训的内容吗?肯定不可能,除非你会分身。
下面给大家分享一篇篇幅不长的文章——一名数据分析师的人生经验:走过都是财富!没错,走过的路,都是生活的财富,愿这位数据分析师的人生经验,能在你前行的数据分析师道路上,为你指点迷津,拨开云雾,哪怕起的作用只有那么一点点,也是收获。成长的道理上,你我共同进步!
我走过的路,关于数据分析师
所谓世上没有蠢人,只要懒人。而我恰恰就在青春的几年岁月里将自己推到了懒人的行列。在数据分析师的行业里“懒”过了几年,如今回头来看看自己,觉得自己挺乐观的,也挺好玩的。一名数据分析师走过的路,就是我,与你分享分享我的股市,只为让你们更好的成长。希望我的一番经历和总结,可以给你带来一些帮助和借鉴,让你的数据分析师可以走得更坚定、更顺畅!不过纯属借鉴,一切还是得自己慢慢去领悟和体会喔!
走过的路,成长还在继续
疏于总结自己走过的路做过的事就是我的“懒”体现之一,最近看到不少童靴在各种渠道问各种关于数据分析师的问题,比如“快要毕业了想做数据分析师要如何准备面试”,“现在是做XX工作,换工作时想转行做数据分析师应该补充些什么指示”等等,所以决定摆脱拖延症就从总结自己作为一个数据分析师走过的路开始,各位看官觉得有所收益,欢迎点赞,若想拍砖也请求大侠给小女子一些指点。
2008年在黑龙江省某大学统计学本科毕业,放眼我龙江招收统计学学生的岗位只有各种车间统计员(也许是本人没有找到好的机会,不同意这个就业现状的童靴请鄙视我好了)。去几个厂子面试下来,出于不想每天进出车间的原因,开始寻找北京上海的工作机会,于是乎就来到了上海。
第一份工作是在一个对外贸易电商公司做会员统计分析,将当时的工作情况总结为下图,如果现在工作内容和我这份工作相似的童靴可以参考下我转换到下一份工作的方向和需要准备的知识。
工作两年后由于再无法从这份工作中得到提升,于是开始考虑换工作的事情了,由于技术能力有限和机缘巧合,得到了“数据库营销”这份工作,在原有知识和经验的基础上,恶补了SQL数据处理技能和营销知识,当时正值数据库营销的黄金时代,每年对公司的应收贡献不小,工作内容见下图。
做了三年数据库营销之后,由于各大email公司对广告邮件管控愈加严厉以及中国网民非工作邮箱使用活跃度大幅下降,营销效果大打折扣,我的工作热情也渐渐消退,于是开始谋划新的出路。此时数据分析师的职业已经开始风生水起,依靠我的统计学本科背景、SQL数据处理能力以及以往的业务分析经验顺利挤进数据分析师的队伍。目前在做运营岗位的童靴如果想转行做数据分析师可以参考我的转折路径和知识准备,工作内容总结如下图。
做好一名数据分析师,我总结下来12个字,懂业务、勤学习、沟通畅、工具熟,具体展开如下图,各位分析大侠们如果持不同观点,还请不吝赐教,在下先谢过了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14