京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谈到数据科学家,数据工程师,软件工程师和统计人员之间的区别,可能会令人感到困惑。虽然都与数据有关,但他们进行的工作之间存在根本的差异。
数据的发展及其在整个行业的应用是显而易见的。特别是最近几年,我们可以看到处理和管理数据的角色中有明显的分工。
数据科学无疑是一个正在发展的领域。由于收集和处理数据会带来许多复杂的问题,该领域现在细分为许多不同的职位和角色。如今数据科学家会具体分为数据工程师、数据统计学家和软件工程师等。但除了名称上的不同之外,有多少人真正了解他们所从事工作的区别呢?
在本文中我将解读数据行业中这些不同的角色,当中我主要列举出以下四个角色予以区分。
统计学家
统计学家位于整个数据处理过程的最前沿,运用统计理论解决许多与众多行业有关的实际问题。他们能够独立决定哪些查找和收集数据的方法是可行的。
统计学家通过有意义的方法来部署数据收集,比如设计调查、问卷调查、实验等方法。
他们对数据进行分析和解释,之后将得出的分析见解提供给上级。统计学家需要具备分析和解读数据的能力,并用简单易懂的方式解读复杂的概念。
统计学家通过研究得出的数字,并将这些数字应用到现实生活中。
软件工程师
软件工程师是数据分析过程中的重要组成部分,负责构建系统和应用程序。软件工程师的工作涉及开发测试以及审查系统和应用。他们负责创建最终会产生数据的产品。软件工程是本文提到的四种角色中最老的一种,在数据繁荣发展之前他们就已成为重要的一部分。
软件工程师负责开发前端和后端系统,从而帮助收集和处理数据。这些网络、移动应用通过完美的软件设计实现操作系统的发展。由软件工程师开发应用生成的数据之后会交给数据工程师和数据科学家。
数据工程师
数据工程师致力于开发、构建、测试和维护体系结构,比如大型处理系统或数据库。数据工程师和数据科学家经常混淆的主要区别在于,数据科学家主要负责清洗、组织和查找大数据。
在上文你可能会注意到”清洗“这个词,通过这个词能帮助你更好地理解数据工程师和数据科学家之间的区别。总体来说,这两类专家所付出的努力都是为了用简单易用的格式获取数据,但两者涉及的技术和责任是不同的。
数据工程师负责处理涉及众多机器、人员或仪器错误的原始数据。数据可能包含可疑记录,甚至无法验证。这些数据不仅是非格式化的,而且还包含适用于特定系统的代码。
这时就需要数据工程师的介入。他们不仅提供了提高数据效率、质量和可靠性的方法和技术,还需要实施这些方法。为了处理这种复杂情况,他们需要使用大量工具并掌握各种语言。数据工程师要确保工作架构对于数据科学家是可行的。一旦完成了初始流程,数据工程师需要将数据交给数据科学家团队。
简单来说,数据工程师通过服务器确保数据流的不间断传输,他们主要负责数据所需的架构。
数据科学家
我们现在已经知道,数据科学家将获得已经由数据工程师处理过的数据。数据已经过清洗和处理,数据科学家可以用这些数据进行分析,以及预测建模。为了构建这些模型,数据科学家需要进行广泛的研究,并从外部和内部数据源积累大量数据,以满足所有业务需求。
一旦数据科学家完成最初的分析阶段,他们必须确保所做的工作是自动化的,所有的分析见解会提供给相关人员。确实值得注意的是,数据科学家和数据工程师所需的技能实际上有点类似。但是这两者在行业中区别逐渐变得明显。数据科学家需要了解与统计数据、机器学习和数学相关的知识,以确保能够构建准确的预测模型。此外,数据科学家还需要了解关于分布式计算的内容。通过分布式计算,数据科学家将能够获得工程团队处理的数据。数据科学家还需负责将分析结果汇报给公司上级,因此也需要掌握可视化相关内容。
数据科学家利用其分析能力,从输入机器的数据中得出有意义的分析结论。数据领域是正在不断发展,当中涵盖了超过我们想象的可能性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26