
传统零售行业过去是“许三多”——客户多、商品多、门店多。到今天还要加上一多——数据多。虽然互联网的发展以及电商的井喷,使得零售行业在2017年遭受了闭店潮,但从另外一个角度来说,即使在实体、电商竞争均十分激烈的服装零售领域,也有从大数据中获利的典型。2018年,实体零售如想逆势突围,必须转型,成为数据管理型企业。
2017年,零售业受到互联网与电商的冲击,遭受闭店潮。年初,商超巨头沃尔玛宣布全球闭店269家,涉及员工上万人;万达百货近四十家店关闭;天虹百货、阳光百货、玛莎百货也纷纷沦陷;年底,朋友圈疯狂流传《实体店阵亡名单》,除了前面提到的几家之外,梅西百货、家乐福、麦当劳、美特斯邦威、李宁等知名品牌也“榜上有名”。
与此同时,Inditex作为拥有Zara、Pull&Bear、Bershka等多个快时尚品牌的母公司,却在2017年交出了净利润上涨10%的成绩单,销售额达到233.1亿欧元,成为历史最高记录。这种上扬的势头更延续到了2017年——根据上周三发布的报告,Inditex集团各品牌开业1年以上的店铺,在本财年的头六周里销售额均上涨了8%。而H&M,则以下降1%的成绩惜败开场。
Zara的成功来自方方面面,最核心的一点,验证了著名经济学家郎咸平的洞察:“2000年后成功的企业,成功不是靠创新,而是靠快速反应。”Zara有一套自己的速射生产系统(rapid-fire production system),信息依靠每个门店经理手中的PDA传递给总部,以销定产、以产定购;他们在POS机、ERP、SCM、CRM与CAD中产生的数据从来都不是彼此孤立的。因此无论是库存管理、生产模式、与门店配送,都像坐了火箭一般,快到其它品牌无法简单抄袭。为什么都叫快时尚,但H&M、GAP就是快不过Zara?Inditex的首席执行官Pablo Isla在接受采访时说:“没有什么秘诀,我们只是做到了快速响应数据。”
那么,2018年,零售商如何像Zara一样,快速响应数据呢?我们根据零售行业的特点,总结了行业数据分析的五大趋势,供大家参考。
趋势一:全源数据整合
零售行业门店多、客户多、Sku多,经常面临的问题是,销售数据在一个系统中,客户数据在一个系统中,商品信息在一个系统中,各个系统之间彼此不相关联,很难从数据中发现隐藏的问题或商机,更不可能做到像Zara那样,根据每个门店的信息反馈,将存货周转率提至业内最优,比其它品牌高3~4倍。
对于有数据头脑的决策者来说,明知有大量数据可用,却难以调动,这种感觉会更加痛苦。往往决策者需要看到某个指标来指导决策,但从提出需求到IT响应,却需要一周甚至更长时间。到手的数据已然过期,只能用来复盘。
2017年,将有越来越多的零售行业从业人员受益于全源数据整合工具——它可以将零售商散落在本地文件、云端数据与第三方系统中的数据整合在一起,同时运用在线数据处理工具,抽取其中的关键指标,形成定制化的数据集。从提出需求到拿到报表,将以小时甚至分钟计。高薪聘请的数据分析师或数据科学家,将有更多的时间用来分析数据;管理者也能用第一手的数据用来进行销售布局、调整营销策略等。
趋势二:数据分析不再被专业分析师“垄断”
零售行业包罗万象,有员工上万的全球性企业,也有单兵作战的小店。以前,要进行数据分析,要经过提取数据、清洗数据、建模等过程,必须由专业人员来进行,而且通常要部署一个专业的数据分析部门,花费不菲。但在2017年,即使是便利店主也能深耕数据,这完全是因为交互性数据视觉工具的诞生——仅需鼠标点击、拖拽,就可以生成各种各样的图表,上手性极强,任何人都可以操作。而且,数据视觉融合了人脑科学、管理科学与信息科学的精华,可以激发使用者的商业智能,快速驱动决策。可以说,在这个年代,我们有能力拥抱这种本身具有高度的专业性、但却更加容易操作的数据分析工具了。而且,这种工具由于依托于云,不需要本地部署,不需要购买硬件,所以价格相对低廉。
因为这种工具的诞生,高级分析将不再被专业分析师“垄断”,中小微型的零售企业也可以利用数据驱动管理;另外,只要愿意,企业人人都可以拥有自己的管理看板,仅抽取自己最关心的指标,用精准的数据来指导自己的工作;最后,无论是自己分析、还是与它人分享,可视化图表都要比单纯数字或文字的报表更加直观,更能促进决策。
趋势三:让企业的响应速度跟得上数据的生产速度
想跟上Zara脚步的企业很多,但至今没有出现“第二个Zara”,何解?
很大一个原因是因为,企业的响应速度追不上数据的生产速度,而这是数据驱动运营的关键。拿Zara与H&M的速度战来举例,两个企业看到T台走秀(获取灵感)的时间是一样的,但H&M从打版到出货需要3个月左右的时间,Zara仅需两周。如果信息不能在第一时间被消化、利用,其时效性就无法保证,而世界千变万化,过期的信息就等于错误的信息。
如何让企业的响应速度跟得上数据的生产速度?首先,一手数据需要直达一手分析。以前的商业智能,需要做大量的重复性工作,即使是格式相同的周报、月报,每一次需求都代表着一系列的工作;但2017年,一手数据可以直达一手分析:只要用数据处理工具制作一次数据流,并基于该数据流制作一次分析看板,以后的工作量就是点击一次鼠标、选择自动更新源数据的事儿。其次,一手分析需要直达决策人。企业各层级、各职能的负责人,不再基于一份复杂的报表,拆分自己最需要关注的部分,而这部分指标可能还并不精确;他们只需要拥有一个自己的管理看板,并选择实时更新即可。最后,一手决策需要直达执行团队。无论是生产、供货、配送、还是运营,都能第一时间拿到决策、看到支持决策的数据以信任决策、最终执行决策,完成从数据到行动的全过程。只有数据-分析-决策-执行全部秒级响应,才能保证企业的响应速度跟得上数据的生产速度。
趋势四:移动分析加速零售行业发展
数据的分析与分享,只能在PC端实现吗?如果报告的接收人是常年需要辗转各地的CXO、是销售、是买手等不能朝九晚五对着电脑的角色,那么再好的工具,是否都无法实现“即时响应”了?当年,Zara为每个门店的经理定制了PDA,保证了信息的无障碍流通,堪称业界创举。我们不禁想象,如果零售产业链上的每一个关键节点,从CXO、生产部门、供应商、配送中心、到门店等,都能通过移动端来共享信息,那么很多问题,都将不再是问题。
2018年,零售实体店将与大数据全面整合,这不光是说传统零售行业都要往线上商城上转移阵地,而是说,实体店也能利用数据来优化整个业务链条。其中最关键的工具之一,就是支持移动端分析的沟通协作工具。有了它,CXO即使人在机场,也能基于数据输出决策;运营人员即使全天在外,也可基于数据调整自己的推广渠道;销售团队更能随时随地掏出手机,基于数据展示自己产品的优势。移动分析工具突破了时间和空间的限制,全方位助力企业管理数据化。
趋势五:机器学习带领零售业走向科技密集型产业
除此之外,机器学习、人工智能的发展也能为零售带来机遇。H&M“回收旧衣”,除了环保,也有节省生产资源的目的。而Zara则在生产源头就利用机器来规划每一块布料的使用,确保剪裁方式是最节省的。现在,AI、机器学习等可能对于某些传统零售企业来说还有点遥远,但也许用不了几年,AI就会进入广大企业,替代人工完成一些日常的工作,带领零售行业从“劳动密集型”产业走向“科技密集型”产业。届时,有用数据的增量会比今天更加可观——我们是否做好准备,迎接新智慧?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23