京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业智能(BI)努力的是企业与数据之间的“最后一公里”,而新一代商业智能云平台要做的,则是企业和数据之间的“额外一公里”,让你跟数据的关系从0距离变成负距离。深入,再深入一点。
传统BI:企业与数据的“最后一公里”
根据Tableau发布的《2017最需关注的十大云趋势看点》,由于各种设备与云技术的发展,大量数据都能够轻松存储在云端。企业的关注点从“如何获取数据”,变成了“如何分析数据”。企业需要能够无缝连接、集成不同云托管数据的分析工具,来弥合自己与数据之间“最后一公里”的距离。
以前,企业的选择是商业智能(Business Intelligence),它可以帮助企业收集、管理和分析数据,将这些数据转化为知识或洞察(insight),然后分发到企业各处。
但是,在Gartner发布的《2017BI和数据分析软件市场统计报告》中,发现了这样的趋势:
(1)传统的商业智能平台市场占有率正在逐年降低。从2013年的49%,降至2015年的41%。而与之相反的,是新一代商业智能平台,它的市场占有率从7%上升至14%,几乎“吃”掉了传统BI失掉的所有市场。

(2)根据预测,未来10年将有更多的分析工具/商业智能产品部署于云。

究竟新一代商业智能“新”在哪儿?为什么有能力蚕食传统BI的市场?Gartner2015年提出“Modern BI Platform”这一概念时,曾经从五个方面描述了传统BI与新一代BI之间的区别:

从上图中可以看出,新一代BI最大的变化,就是把商业分析全流程的中心从专家转向了业务人员,IT部门不再是数据采集、准备与内容创作的主力或灵魂,仅在分析的流程中提供一小部分的支持工作;以前业务人员跟数据之间隔着一个IT部门,像隔着一座大山;新一代商业智能,允许业务人员直接跟数据对话、直接创建分析内容、自由的用可视化进行数据探索,还可以彼此协作。
新一代BI赋予了业务人员与数据直接对话的能力,不要小瞧这个进步。这几乎是推翻了传统商业智能的产品框架,回到“让谁用”、“怎么用”的源头,把整个工具做了一个“民主化”的革新。
民主的好处,于社会不用多言;于数据,则是弥合了从信息到行动之间的距离。对于企业来说,这就是那“额外的一公里”——发生在企业内部的、全员与数据共舞的美妙。
“额外一公里”的before我们都经历过、或正在经历着;现在,让我们来具体解释展现一下“额外一公里”的after——
* 新一代商业智能中,因为全员可以访问数据,所以无论部门、职能、级别,每个人都可以得到自己需要的数据;
* 因为全员可以自己处理数据,所以每个人都能在最短时间内得到自己想要知道的答案,节省大量与IT部门或“第三者”解释需求、等待满足的时间;
* 因为全员可以自由地对数据进行可视化的交互分析,所以任何疑问答案都是“立等可取”的,而那些常规型的报告,也不用重复制作,打开界面就可以看到了,跟数据的亲密关系又进一层;
* 因为有了“数据协作”,全员基于唯一真实的数据展开工作,部门与部门之间不再是孤岛,从彼此扔锅到展开合作,不再是梦想。
以上所有的一切,都大大缩短了从信息到行动的距离。
新一代BI为“全员数据化”赋能,还有一个利好,就是让每一个“决策者”都有据可依,要知道,这可是一个企业人人都是“决策者”的时代。美国一家上市公司是这样形容的:“每个人都在做决策。每个小时,每一天。CXO们并不是影响运营和盈利的唯一因素:几乎所有的员工都可以通过他们的工作习惯、他们使用(或滥用)的技术、对突发事件及挑战的应对方式等,对运营产生影响。事实上,‘决策者’这个术语已经可以适用于任何人。”
1936年,查理-卓别林执导并主演的《摩登时代》里,曾经把工人比作城市大机器中的一个零件,在设定好的固定程序下每天重复。今天,工业社会已发展成为信息社会,我们的工作比过去需要更多的主动与创新,但企业依旧是一个环环相扣的生产线,每一个环节都影响着企业的最终盈利,每一个环节都不容出错。
因此,我们为什么不把最适合这个时代的利器,交到每一个环节的负责人手中呢?
这就是新一代BI存在的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01