
挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖掘用户价值的方法?deepseek的思考还是非常合逻辑的,其中,用户分群、合个性化推荐几乎所有企业都在用,而这一块也是数据分析师体现个人价值的地方。
在数字化时代,企业要想在激烈的市场竞争中脱颖而出,离不开对用户的深度理解和精准运营。挖掘用户价值的第一步是对用户对象打标签,进行用户分层,而在这个过程中,用户标签体系和指标体系就像两把利器,帮助企业更好地认识用户、优化业务。
简单来说,用户标签体系就是给用户“贴标签”,把用户的属性、行为、兴趣等信息进行分类和标记。比如:
这些标签就像用户的“身份证”,帮助我们快速了解用户是谁、喜欢什么、做了什么。
建立了用户标签体系,就可以把用户分成不同的群体,比如“高价值用户”“潜在用户”“流失用户”;根据标签推送个性化内容,比如给喜欢运动的人推荐运动装备;通过标签组合,形成完整的用户画像,帮助企业更好地理解用户需求。
某电商平台通过标签体系发现,25-35岁的女性用户对美妆产品有较高兴趣。于是,他们针对这一群体推送了某品牌口红的促销广告。活动结束后,通过指标体系发现,这次活动的转化率达到了15%,远高于其他群体的平均转化率(8%)。基于这一数据,平台决定加大对这一用户群体的营销投入。
指标体系是通过一系列量化指标来衡量业务表现和用户行为。用数据说话,让业务“有据可依”,依的就是指标体系。常见的指标体系如:
这些指标就像业务的“体检报告”,帮助企业了解业务是否健康、用户是否满意。
某外卖平台发现新用户的留存率较低。于是,他们针对新用户推出了“首单立减10元”的活动。通过指标体系发现,这一策略使新用户的7日留存率从20%提升到了35%。同时,针对流失用户,平台推送了“回归礼包”,成功召回了15%的流失用户。这就是指标体系的作用。
某社交平台通过标签体系发现,很多用户经常在app上搜索“夜间模式”,发现用户对于“夜间模式”有强烈需求。于是,平台在最新版本中增加了这一功能。通过指标体系发现,夜间模式的使用频率高达60%,且用户满意度提升了20%。基于这一数据,平台决定进一步优化夜间模式的视觉效果。另外,也可以根据这个“夜间模式”使用情况,设定营销计划。
用户标签体系和指标体系是CDA数据分析师一级考试的重点内容。
随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程。
CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09