京公网安备 11010802034615号
经营许可证编号:京B2-20210330
rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.132 rm -rf /opt/linuxsir/hadoop/logs/*.*
ssh root@192.168.31.133 rm -rf /opt/linuxsir/hadoop/logs/*.*
clear
cd /opt/linuxsir/hadoop/sbin
./start-dfs.sh
./start-yarn.sh
clear
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
在eclipse里面操作如下:
New-Java Project,名称自定义即可,如 java-prjNew-Package,名称自定义为com.pai.hdfs_demoNew-Class,名称自定义为ReadWriteHDFSExamplepackage com.pai.hdfs_demo;
import org.apache.commons.io.IOUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.*;
import java.nio.charset.StandardCharsets;
public class ReadWriteHDFSExample {
// main 新建一个类ReadWriteHDFSExample,编写main函数如下。main函数调用其它函数,创建目录,写入数据,添加数据,然后再读取数据
public static void main(String[] args) throws IOException {
// ReadWriteHDFSExample.checkExists();
ReadWriteHDFSExample.createDirectory();
ReadWriteHDFSExample.writeFileToHDFS();
ReadWriteHDFSExample.appendToHDFSFile();
ReadWriteHDFSExample.readFileFromHDFS();
}
// readFileFromHDFS 该函数读取文件内容,以字符串形式显示出来
public static void readFileFromHDFS() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsReadPath = new Path("/javareadwriteexample/" + fileName);
// initialize input stream
FSDataInputStream inputStream = fileSystem.open(hdfsReadPath);
// Classical input stream usage
String out = IOUtils.toString(inputStream, "UTF-8");
System.out.println(out);
// BufferedReader bufferedReader = new BufferedReader(
// new InputStreamReader(inputStream, StandardCharsets.UTF_8));
// String line = null;
// while ((line=bufferedReader.readLine())!=null){
// System.out.println(line);
// }
inputStream.close();
fileSystem.close();
}
// writeFileToHDFS writeFileToHDFS函数打开文件,写入一行文本
public static void writeFileToHDFS() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsWritePath = new Path("/javareadwriteexample/" + fileName);
FSDataOutputStream fsDataOutputStream = fileSystem.create(hdfsWritePath, true);
BufferedWriter bufferedWriter = new BufferedWriter(
new OutputStreamWriter(fsDataOutputStream, StandardCharsets.UTF_8));
bufferedWriter.write("Java API to write data in HDFS");
bufferedWriter.newLine();
bufferedWriter.close();
fileSystem.close();
}
// appendToHDFSFile 函数打开文件,添加一行文本。需要注意的是,需要对Configuration类的对象configuration进行适当设置,否则出错
public static void appendToHDFSFile() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
//configuration.setBoolean("dfs.client.block.write.replace-datanode-on-failure.enabled", true);
configuration.set("dfs.client.block.write.replace-datanode-on-failure.policy","NEVER");
configuration.set("dfs.client.block.write.replace-datanode-on-failure.enable","true");
FileSystem fileSystem = FileSystem.get(configuration);
// Create a path
String fileName = "read_write_hdfs_example.txt";
Path hdfsWritePath = new Path("/javareadwriteexample/" + fileName);
FSDataOutputStream fsDataOutputStream = fileSystem.append(hdfsWritePath);
BufferedWriter bufferedWriter = new BufferedWriter(
new OutputStreamWriter(fsDataOutputStream, StandardCharsets.UTF_8));
bufferedWriter.write("Java API to append data in HDFS file");
bufferedWriter.newLine();
bufferedWriter.close();
fileSystem.close();
}
// createDirectory 函数创建一个目录
public static void createDirectory() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
String directoryName = "/javareadwriteexample";
Path path = new Path(directoryName);
fileSystem.mkdirs(path);
}
// checkExists checkExists检查目录或者文件是否存在。注意如下代码的最后一个括号是ReadWriteHDFSExample类的结束括号
public static void checkExists() throws IOException {
Configuration configuration = new Configuration();
configuration.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
FileSystem fileSystem = FileSystem.get(configuration);
String directoryName = "/javareadwriteexample";
Path path = new Path(directoryName);
if (fileSystem.exists(path)) {
System.out.println("File/Folder Exists : " + path.getName());
} else {
System.out.println("File/Folder does not Exists : " + path.getName());
}
}
}
为了编译通过上述Java代码,需要把如下目录下的jar包导入Eclipse项目的Build Path
操作序列为 右键点击Eclipse里的Java项目→Properties→Java Build Path →Libraries→Add External Jars
# 添加如下路径的包
D:hadoop-2.7.3sharehadoopcommonlib
D:hadoop-2.7.3sharehadoopcommon
D:hadoop-2.7.3sharehadoophdfs
D:hadoop-2.7.3sharehadoophdfslib
D:hadoop-2.7.3sharehadoopmapreducelib
D:hadoop-2.7.3sharehadoopmapreduce
D:hadoop-2.7.3sharehadoopyarnlib
D:hadoop-2.7.3sharehadoopyarn
就可以愉快地执行了,执行完毕上述代码后,在hd-master主机上可以通过如下命令,检查已经写入的文件
[root@hd-master bin]# cd /opt/linuxsir/hadoop/bin
[root@hd-master bin]# ./hdfs dfs -ls /javareadwriteexample/read_write_hdfs_example.txt
-rw-r--r-- 3 root supergroup 70 2024-10-10 04:47 /javareadwriteexample/read_write_hdfs_example.txt
[root@hd-master bin]# ./hdfs dfs -cat /javareadwriteexample/read_write_hdfs_example.txt
Java API to write data in HDFS
Java API to append data in HDFS file
为了多次进行实验(或者为了调试代码),可以把HDFS文件删除,然后再执行或者调试Java代码,否则一经存在该目录,执行创建目录的代码就会出错
cd /opt/linuxsir/hadoop/bin
./hdfs dfs -rm /javareadwriteexample/*
./hdfs dfs -rmdir /javareadwriteexample
cd /opt/linuxsir/hadoop/sbin
./stop-yarn.sh
./stop-dfs.sh
jps
ssh root@192.168.31.132 jps
ssh root@192.168.31.133 jps
package mywordcount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
//定义WordCount类的内部类TokenizerMapper 该类实现了map函数,把从文件读取的每个word变成一个形式为<word,1>的Key Value对,输出到map函数的参数context对象,由执行引擎完成Shuffle
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
//定义WordCount类的内部类IntSumReducer 该类实现了reduce函数,它收拢所有相同key的、形式为<word,1>的Key-Value对,对Value部分进行累加,输出一个计数
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
String thekey = key.toString();
int thevalue = sum;
}
}
// WordCount类的main函数,负责配置Job的若干关键的参数,并且启动这个Job。在main函数中,conf对象包含了一个属性即“fs.defaultFS”,它的值为“hdfs://192.168.31.131:9000”,使得WordCount程序知道如何存取HDFS
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
conf.set("fs.defaultFS", "hdfs://192.168.31.131:9000");
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
[root@hd-master bin]# ./hdfs dfs -ls /output1
Found 2 items
-rw-r--r-- 3 root supergroup 0 2024-10-10 05:17 /output1/_SUCCESS
-rw-r--r-- 3 root supergroup 89 2024-10-10 05:17 /output1/part-r-00000
[root@hd-master bin]# ./hdfs dfs -cat /output1/part-r-00000
I 1
apache 1
cloudera 1
google 1
hadoop 8
hortonworks 1
ibm 1
intel 1
like 1
microsoft 1
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11