
SQL中的聚合函数是一组用于计算和处理数据集的函数。它们可以对列或行进行计算,并返回单个结果值。常见的聚合函数包括SUM(求和)、AVG(平均值)、COUNT(计数)、MAX(最大值)和MIN(最小值)。使用这些函数,我们可以对数据库中的数据执行各种统计操作。
要使用聚合函数,需要在SQL查询语句中使用它们,并指定要计算的列或表达式。以下是几个常用的聚合函数及其用法:
SUM(求和):用于计算某列的总和。例如,"SELECT SUM(sales) FROM orders;" 将返回orders表中sales列的总和。
AVG(平均值):用于计算某列的平均值。例如,"SELECT AVG(price) FROM products;" 将返回products表中price列的平均值。
COUNT(计数):用于计算某列的非空值数量。例如,"SELECT COUNT(*) FROM customers;" 将返回customers表中记录的数量。
MAX(最大值):用于获取某列的最大值。例如,"SELECT MAX(quantity) FROM inventory;" 将返回inventory表中quantity列的最大值。
MIN(最小值):用于获取某列的最小值。例如,"SELECT MIN(age) FROM employees;" 将返回employees表中age列的最小值。
此外,还可以在聚合函数中使用GROUP BY子句将数据分组,以便对每个组应用聚合函数。例如,"SELECT department, AVG(salary) FROM employees GROUP BY department;" 将返回按部门分组的平均工资。
在使用聚合函数时,还可以结合其他SQL语句和条件来过滤、排序和限制结果。这使得我们可以根据需要对数据进行更复杂的计算和操作。
SQL中的聚合函数是一种强大的工具,用于在数据库中执行各种统计计算。它们可以对数据进行求和、取平均值、计数、获取最大值和最小值等操作。通过结合其他SQL语句和条件,我们可以对数据进行更精确的分析和处理,以满足特定的需求。熟练运用聚合函数可以帮助我们从数据库中提取有用的信息,并进行更深入的数据分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10