
在机器学习中,数据集划分是一项重要的任务,它将可用的数据分为训练集、验证集和测试集,以支持模型的开发、调优和评估。合理的数据集划分方法可以提高模型的泛化能力和性能。以下是几种常见的数据集划分方法:
简单随机划分: 这是最基本的数据集划分方法之一。它通过随机地将数据样本分配给不同的集合来创建训练集、验证集和测试集。通常,训练集占总数据量的70-80%,验证集和测试集各占10-15%。这种方法简单易行,但可能会导致划分不均衡,特别是在数据集较小时。
分层随机划分: 分层随机划分考虑到了类别分布的平衡性,尤其适用于分类问题。它确保每个类别在训练集、验证集和测试集中的比例相近。这样可以避免某些类别在训练过程中得到较少的表示,从而影响模型的性能。
时间序列划分: 对于时间序列数据,如股票价格、气象数据等,随机划分可能不合适,因为时间上的先后关系对模型的性能有重要影响。常见的时间序列划分方法是按照时间顺序将数据集划分为训练集、验证集和测试集。通常,训练集包含较早的数据,验证集包含中间的数据用于模型选择,而测试集包含最新的数据用于最终评估。
K折交叉验证: K折交叉验证是一种常用的模型评估方法。它将数据集划分为K个互不重叠的子集,称为折。其中K-1个折用作训练集,剩余的1个折用作验证集。通过多次重复这个过程,每个折都充当一次验证集,可以更全面地评估模型的性能。最后,将K次评估的结果取平均值得到最终结果。
留一法: 留一法是K折交叉验证的特例,其中K等于数据集的样本数量。在每一轮中,只有一个样本被用作验证集,其余样本作为训练集。由于需要迭代多次,留一法计算成本较高,通常适用于数据集较小的情况。
无论使用何种划分方法,数据集的划分应该遵循以下原则:
数据集划分是机器学习中关键的步骤之一。不同的划分方法适用于不同类型的数据和问题。合理地进行数据集划分可以帮助我们开发出更具泛化能力和稳定性的机器学习模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11