 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		Pandas 是一个流行的 Python 数据分析库,它提供了一系列方便的工具,可以用来操作和处理数据。在 Pandas 中,DataFrame 是最主要的数据结构之一,它可以看作是一种二维数据表格,其中每个列代表一种变量,而每行则代表一个样本或观察值。在实际数据分析中,我们经常需要按照某些条件过滤 DataFrame 中的行,以便得到符合特定需求的子集。本文将介绍如何根据 Pandas 中的列值过滤 DataFrame 行。
假设我们有一个包含多个列的 DataFrame,现在想要根据其中某一列的值进行筛选,该怎么做呢?这时候就需要使用 Pandas 的布尔索引功能。具体来说,我们可以通过在 DataFrame 中使用与、或、非等逻辑运算符将多个比较项组合起来,从而生成一个布尔型 Series,然后使用这个 Series 来选择 DataFrame 中对应的行。下面是一个简单的例子:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 列的值筛选行 df_filtered = df[df['age'] > 30] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 2 Charlie 35 M 3 David 40 M
这里我们通过在 DataFrame 中使用df['age'] > 30来生成一个布尔型 Series,并将其作为索引来选择符合条件的行。需要注意的是,这里的>符号只能用于比较数值类型的列,如果要比较其他类型的列,需要使用其他适当的比较符号。
除了大于号之外,还有很多其他的比较符号可以用于筛选单个列的值,例如等于、不等于、小于等。具体来说,常用的比较符号如下:
上面的例子中我们只筛选了一个列的值,那如果想要筛选多个列的值呢?这时候就需要使用 Pandas 的 loc 或 iloc 属性,结合布尔索引功能来实现。具体来说,loc 属性用于按标签(即列名)访问数据,而 iloc 属性则用于按位置访问数据。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.loc[(df['age'] > 30) & (df['gender'] == 'M')] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 loc 属性按列名访问了 DataFrame 中的 age 和 gender 列,并将其用于生成布尔型 Series。然后我们使用与逻辑符&将两个比较项组合起来,并将结果传递给 loc 或 iloc 属性来选择符合条件的行。
需要注意的是,如果要同时筛选多个列
的值,需要使用圆括号将不同列的比较项括起来,并使用逻辑运算符进行组合。为了让代码更加清晰易读,推荐在每个比较项之间添加换行符或缩进。
除了使用比较运算符来筛选 DataFrame 的行之外,还可以使用 Pandas 提供的 isin() 方法。该方法可以用于检查 DataFrame 中某一列中的值是否包含在指定的列表中,返回一个布尔型 Series。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 gender 列的值筛选行 df_filtered = df[df['gender'].isin(['F', 'M'])] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M 3 David 40 M
这里我们使用 isin() 方法检查 DataFrame 中的 gender 列中的值是否包含在列表['F', 'M']中,并将结果传递给布尔索引功能来选择符合条件的行。需要注意的是,isin() 方法接受一个包含要匹配值的列表作为参数,可以同时匹配多个值。
除了上述方法之外,Pandas 还提供了一个 query() 方法,可以让我们使用类似 SQL 的语法来筛选 DataFrame 中的行。具体来说,该方法接受一个字符串表达式,其中包含列名、比较符号和逻辑运算符等操作,返回一个 DataFrame 子集。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.query('age > 30 and gender == "M"') print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 query() 方法将条件表达式'age > 30 and gender == "M"'传递给 DataFrame,用于筛选行。需要注意的是,在查询表达式中,列名需要用引号括起来,而字符串或数字则不需要。
总之,Pandas 提供了多种方法来根据列值过滤 DataFrame 的行。在实际数据分析中,需要根据具体需求选择最合适的方法,以便高效地处理大规模数据集。
	想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23