京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas 是一个流行的 Python 数据分析库,它提供了一系列方便的工具,可以用来操作和处理数据。在 Pandas 中,DataFrame 是最主要的数据结构之一,它可以看作是一种二维数据表格,其中每个列代表一种变量,而每行则代表一个样本或观察值。在实际数据分析中,我们经常需要按照某些条件过滤 DataFrame 中的行,以便得到符合特定需求的子集。本文将介绍如何根据 Pandas 中的列值过滤 DataFrame 行。
假设我们有一个包含多个列的 DataFrame,现在想要根据其中某一列的值进行筛选,该怎么做呢?这时候就需要使用 Pandas 的布尔索引功能。具体来说,我们可以通过在 DataFrame 中使用与、或、非等逻辑运算符将多个比较项组合起来,从而生成一个布尔型 Series,然后使用这个 Series 来选择 DataFrame 中对应的行。下面是一个简单的例子:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 列的值筛选行 df_filtered = df[df['age'] > 30] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 2 Charlie 35 M 3 David 40 M
这里我们通过在 DataFrame 中使用df['age'] > 30来生成一个布尔型 Series,并将其作为索引来选择符合条件的行。需要注意的是,这里的>符号只能用于比较数值类型的列,如果要比较其他类型的列,需要使用其他适当的比较符号。
除了大于号之外,还有很多其他的比较符号可以用于筛选单个列的值,例如等于、不等于、小于等。具体来说,常用的比较符号如下:
上面的例子中我们只筛选了一个列的值,那如果想要筛选多个列的值呢?这时候就需要使用 Pandas 的 loc 或 iloc 属性,结合布尔索引功能来实现。具体来说,loc 属性用于按标签(即列名)访问数据,而 iloc 属性则用于按位置访问数据。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.loc[(df['age'] > 30) & (df['gender'] == 'M')] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 loc 属性按列名访问了 DataFrame 中的 age 和 gender 列,并将其用于生成布尔型 Series。然后我们使用与逻辑符&将两个比较项组合起来,并将结果传递给 loc 或 iloc 属性来选择符合条件的行。
需要注意的是,如果要同时筛选多个列
的值,需要使用圆括号将不同列的比较项括起来,并使用逻辑运算符进行组合。为了让代码更加清晰易读,推荐在每个比较项之间添加换行符或缩进。
除了使用比较运算符来筛选 DataFrame 的行之外,还可以使用 Pandas 提供的 isin() 方法。该方法可以用于检查 DataFrame 中某一列中的值是否包含在指定的列表中,返回一个布尔型 Series。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 gender 列的值筛选行 df_filtered = df[df['gender'].isin(['F', 'M'])] print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 0 Alice 25 F 1 Bob 30 M 2 Charlie 35 M 3 David 40 M
这里我们使用 isin() 方法检查 DataFrame 中的 gender 列中的值是否包含在列表['F', 'M']中,并将结果传递给布尔索引功能来选择符合条件的行。需要注意的是,isin() 方法接受一个包含要匹配值的列表作为参数,可以同时匹配多个值。
除了上述方法之外,Pandas 还提供了一个 query() 方法,可以让我们使用类似 SQL 的语法来筛选 DataFrame 中的行。具体来说,该方法接受一个字符串表达式,其中包含列名、比较符号和逻辑运算符等操作,返回一个 DataFrame 子集。下面是一个示例:
import pandas as pd # 创建 DataFrame df = pd.DataFrame({ 'name': ['Alice', 'Bob', 'Charlie', 'David'], 'age': [25, 30, 35, 40], 'gender': ['F', 'M', 'M', 'M']
}) # 根据 age 和 gender 列的值筛选行 df_filtered = df.query('age > 30 and gender == "M"') print(df_filtered)
运行上述代码,可以得到如下输出:
name age gender 3 David 40 M
这里我们使用 query() 方法将条件表达式'age > 30 and gender == "M"'传递给 DataFrame,用于筛选行。需要注意的是,在查询表达式中,列名需要用引号括起来,而字符串或数字则不需要。
总之,Pandas 提供了多种方法来根据列值过滤 DataFrame 的行。在实际数据分析中,需要根据具体需求选择最合适的方法,以便高效地处理大规模数据集。
想快速入门Python数据分析?这门课程适合你!
如果你对Python数据分析感兴趣,但不知从何入手,推荐你学习《山有木兮:Python数据分析极简入门》。这门课程专为初学者设计,内容简洁易懂,手把手教你掌握Python数据分析的核心技能,助你轻松迈出数据分析的第一步。

学习入口:https://edu.cda.cn/goods/show/3429?targetId=5724&preview=0
开启你的Python数据分析之旅,从入门到精通,只需一步!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09