京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS 是一种功能强大的统计分析软件,常用于数据清理、探索性数据分析、假设检验等数据处理任务。在进行假设检验时,我们通常需要判断数据是否符合正态分布,因为很多假设检验方法都要求数据服从正态分布。在 SPSS 中,可以通过多种方法来判断数据是否符合正态分布,本文将介绍如何使用 K-S 检验和 S-W 检验以及对它们的样本量要求。
正态分布(normal distribution)是概率论中最重要的概率分布之一,其形状呈钟形曲线,左右对称,平均值等于中位数等特点。许多自然现象和社会现象都服从正态分布,如身高、体重、智力分数等。
SPSS 中可以通过多种方法来判断数据是否符合正态分布,这里介绍两种常见的方法:K-S 检验和 S-W 检验。
K-S(Kolmogorov-Smirnov)检验是一种非参数检验方法,其基本思想是比较样本分布与标准正态分布或其他已知分布的差异程度。具体步骤如下:
在 SPSS 中进行 K-S 检验的具体步骤如下:
K-S 检验的优点是不需要对数据进行任何假设,但它也有一些缺点,例如对样本量和分布的偏斜程度较为敏感,且只能检验单个变量是否符合正态分布。
S-W(Shapiro-Wilk)检验也是一种常用的正态性检验方法,它基于样本数据的标准化值,具有较好的效率和精度。其基本思想是比较样本数据与标准正态分布的差异程度。具体步骤如下:
其 p 值。如果 p 值小于等于显著性水平 alpha,则拒绝原假设,认为样本数据不符合正态分布。
在 SPSS 中进行 S-W 检验的具体步骤如下:
与 K-S 检验相比,S-W 检验更加稳健,对样本量和分布的偏斜程度不敏感。但它也有一些缺点,例如对极端值比较敏感,且只能检验单个变量是否符合正态分布。
K-S 和 S-W 检验对样本量的要求略有不同。一般来说,样本量越大,判断正态性的效果越好,因此建议在进行正态性检验时尽可能增加样本量。下面是 K-S 和 S-W 检验对样本量的具体要求。
需要注意的是,虽然 K-S 和 S-W 检验对样本量的要求不同,但它们都假设样本来自一个连续分布且独立同分布,因此对于非连续型数据或存在相关性的数据,应该采用其他方法来进行正态性检验。
在 SPSS 中,可以使用 K-S 和 S-W 检验来判断数据是否符合正态分布。K-S 检验通常适用于大样本量的情况下,而 S-W 检验更加稳健,适用于样本量在 50 到 200 之间的情况。此外,需要注意的是,正态性检验只是判断数据是否符合正态分布,无法证明数据一定服从正态分布,因此在进行假设检验时仍要谨慎。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11