
SPSS 是一种功能强大的统计分析软件,常用于数据清理、探索性数据分析、假设检验等数据处理任务。在进行假设检验时,我们通常需要判断数据是否符合正态分布,因为很多假设检验方法都要求数据服从正态分布。在 SPSS 中,可以通过多种方法来判断数据是否符合正态分布,本文将介绍如何使用 K-S 检验和 S-W 检验以及对它们的样本量要求。
正态分布(normal distribution)是概率论中最重要的概率分布之一,其形状呈钟形曲线,左右对称,平均值等于中位数等特点。许多自然现象和社会现象都服从正态分布,如身高、体重、智力分数等。
SPSS 中可以通过多种方法来判断数据是否符合正态分布,这里介绍两种常见的方法:K-S 检验和 S-W 检验。
K-S(Kolmogorov-Smirnov)检验是一种非参数检验方法,其基本思想是比较样本分布与标准正态分布或其他已知分布的差异程度。具体步骤如下:
在 SPSS 中进行 K-S 检验的具体步骤如下:
K-S 检验的优点是不需要对数据进行任何假设,但它也有一些缺点,例如对样本量和分布的偏斜程度较为敏感,且只能检验单个变量是否符合正态分布。
S-W(Shapiro-Wilk)检验也是一种常用的正态性检验方法,它基于样本数据的标准化值,具有较好的效率和精度。其基本思想是比较样本数据与标准正态分布的差异程度。具体步骤如下:
其 p 值。如果 p 值小于等于显著性水平 alpha,则拒绝原假设,认为样本数据不符合正态分布。
在 SPSS 中进行 S-W 检验的具体步骤如下:
与 K-S 检验相比,S-W 检验更加稳健,对样本量和分布的偏斜程度不敏感。但它也有一些缺点,例如对极端值比较敏感,且只能检验单个变量是否符合正态分布。
K-S 和 S-W 检验对样本量的要求略有不同。一般来说,样本量越大,判断正态性的效果越好,因此建议在进行正态性检验时尽可能增加样本量。下面是 K-S 和 S-W 检验对样本量的具体要求。
需要注意的是,虽然 K-S 和 S-W 检验对样本量的要求不同,但它们都假设样本来自一个连续分布且独立同分布,因此对于非连续型数据或存在相关性的数据,应该采用其他方法来进行正态性检验。
在 SPSS 中,可以使用 K-S 和 S-W 检验来判断数据是否符合正态分布。K-S 检验通常适用于大样本量的情况下,而 S-W 检验更加稳健,适用于样本量在 50 到 200 之间的情况。此外,需要注意的是,正态性检验只是判断数据是否符合正态分布,无法证明数据一定服从正态分布,因此在进行假设检验时仍要谨慎。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11