
Python是一门广受欢迎的编程语言,它拥有许多优秀的第三方库和工具,可以帮助我们处理数据。其中pandas是其中一种非常流行的数据分析库,它为我们提供了许多强大的数据操作函数,其中read_sql就是一个十分常用的函数。在使用read_sql函数时,我们可能会遇到需要查询包含某个字符串的数据的情况,这时候我们可以使用SQL语句中的LIKE关键字来实现。
首先,让我们来看一下read_sql函数的基本用法。read_sql函数可以从SQL查询中返回数据,并将其存储为DataFrame类型的数据结构。它的基本语法如下:
import pandas as pd
import sqlite3
conn = sqlite3.connect('example.db') df = pd.read_sql(sql_query, conn)
其中,sql_query是一个字符串类型的参数,用于指定要执行的SQL查询语句。conn是一个连接对象,用于连接数据库。通过这个函数,我们可以将数据库中的数据读取到Python中,并进行进一步的操作和分析。
当我们需要查询包含某个字符串的数据时,可以使用SQL中的LIKE关键字。LIKE关键字可以用于模糊匹配查询,它允许我们使用通配符来代替部分字符。通配符%表示匹配任意数量的任意字符,而_表示匹配单个任意字符。
例如,假设我们有一个包含用户信息的表user_info,其中包含了用户名、邮箱和电话号码等信息。现在我们想要查询所有邮箱地址中包含“@gmail.com”这个字符串的用户信息,我们可以使用如下SQL语句:
SELECT * FROM user_info WHERE email LIKE '%@gmail.com%';
其中,%表示匹配任意数量的任意字符。
在Python中,我们只需要将上述SQL查询语句嵌入到read_sql函数的sql_query参数中即可执行查询操作,并将结果存储为DataFrame类型的数据结构。具体代码示例如下:
import pandas as pd
import sqlite3
conn = sqlite3.connect('example.db')
query = "SELECT * FROM user_info WHERE email LIKE '%@gmail.com%'" df = pd.read_sql(query, conn)
这样,我们就可以得到所有邮箱地址中包含“@gmail.com”这个字符串的用户信息,并以DataFrame类型的数据结构返回查询结果。
总之,pandas中的read_sql函数是一个非常强大的数据读取函数,它可以帮助我们从SQL查询中读取数据,并将其存储为DataFrame类型的数据结构。当我们需要查询包含某个字符串的数据时,可以使用SQL中的LIKE关键字进行模糊匹配查询。在Python中,我们只需要将SQL语句嵌入到read_sql函数的sql_query参数中即可执行查询操作并返回结果。这些功能的组合使得pandas成为一个非常便捷的数据分析工具,可以帮助我们更加高效地处理数据分析任务。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07