
SQL Server 提供了许多用于处理 JSON 数据的功能,其中之一是解析 JSON 数组。在此篇文章中,我将会介绍如何在 SQL Server 中解析 JSON 数组以及一些相关的注意事项。
JSON 数组的基本概念
JSON 数组是一种存储多个值的方式,每个值都可以是一个简单的类型(例如字符串、数字或布尔值)或者是一个复杂的类型(例如对象或其他数组)。JSON 数组由方括号 [] 包围,其中的值使用逗号分隔。
示例:
[ { "name": "John", "age": 30, "city": "New York" }, { "name": "Mary", "age": 25, "city": "Los Angeles" } ]
以上是一个包含两个对象的 JSON 数组,每个对象都有 name、age 和 city 三个属性。
SQL Server 如何解析 JSON 数组
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据。通过这个函数,你可以将 JSON 数组转换成表格形式,每行代表一个数组元素,每列代表一个属性。
以下是 OPENJSON 函数的基本语法:
OPENJSON(json_expression[, path]) [WITH (property_name data_type [,...])]
示例:
DECLARE @json NVARCHAR(MAX) SET @json = '[{"name": "John","age": 30,"city": "New York"},{"name": "Mary","age": 25,"city": "Los Angeles"}]' SELECT * FROM OPENJSON(@json)
以上 SQL 查询将会返回以下结果:
+-----------+-------+-------------+
| key | value | type |
+-----------+-------+-------------+
| 0 | -- | 5 (= JSON_ARRAY)|
| [0].name | John | 1 (= JSON_STRING)|
| [0].age | 30 | 2 (= JSON_INT)|
| [0].city | New York | 1 (= JSON_STRING)|
| 1 | -- | 5 (= JSON_ARRAY)|
| [1].name | Mary | 1 (= JSON_STRING)|
| [1].age | 25 | 2 (= JSON_INT)|
| [1].city | Los Angeles | 1 (= JSON_STRING)|
+-----------+-------+-------------+
在上面的查询中,我们使用了 OPENJSON 函数来解析 JSON 数组,并且没有指定 path 参数。因此,整个 JSON 对象都被解析了。OPENJSON 函数返回了一个表格,其中每行代表一个数组元素,每列代表一个属性。具体来说,表格包含三列:
注意事项
在使用 OPENJSON 函数时,需要注意以下几点:
总结
SQL Server 提供了 OPENJSON 函数来解析 JSON 数据,可以将 JSON 数组转换成表格形式,方便后续的数据处理。在
使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,OPENJSON 函数只能返回基本数据类型,如果要返回复杂数据类型,需要进行一些转换操作。
在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。以下是一个具有嵌套数组和对象的示例:
{ "name": "John", "age": 30, "hobbies": [ { "name": "reading", "level": 3 }, { "name": "swimming", "level": 2 } ] }
我们可以使用如下 SQL 查询来解析该 JSON 对象:
DECLARE @json NVARCHAR(MAX) SET @json = '{"name": "John","age": 30,"hobbies": [{"name": "reading", "level": 3}, {"name": "swimming", "level": 2}]}' SELECT name, age, hobby_name, hobby_level FROM OPENJSON(@json) WITH (
name VARCHAR(50),
age INT,
hobbies NVARCHAR(MAX) AS JSON
) AS person CROSS APPLY OPENJSON(person.hobbies) WITH (
hobby_name VARCHAR(50),
hobby_level INT );
以上 SQL 查询将会返回以下结果:
+------+-----+------------+-------------+ | name | age | hobby_name | hobby_level | +------+-----+------------+-------------+ | John | 30 | reading | 3 | | John | 30 | swimming | 2 | +------+-----+------------+-------------+
在查询中,我们使用了 CROSS APPLY 子句来展开 hobbies 数组,并用嵌套的 WITH 子句来解析数组中的对象。最终得到包含两列的结果集,其中每行代表一个 hobby 兴趣。
结论
在 SQL Server 中,可以使用 OPENJSON 函数来解析 JSON 数组。通过将 JSON 数组转换为表格形式,可以方便地进行后续的数据处理。在使用 OPENJSON 函数时,需要注意传入的 JSON 数组必须是有效的 JSON 格式,并且如果数组中包含了对象数组,则需要使用嵌套的 OPENJSON 函数来解析。此外,在处理多维数组时,可以使用 CROSS APPLY 子句来展开数组。
推荐学习书籍
《**CDA一级教材**》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26