
当MySQL表的数据量达到1亿多条时,分库分表是一个常见的解决方案。但是,分库分表并不总是适合每种情况,且实施起来可能会非常复杂。因此,本文将探讨一些其他可以考虑的解决方式。
数据清理 在1亿多条记录的数据库中,可能有很多旧、重复或失效的数据,这些数据可能占据了大量的存储空间和资源。通过定期清理这些数据,可以减少数据库的大小,并提高查询性能。
索引优化 索引是MySQL中查询性能最重要的因素之一。建立正确的索引可以加快查询速度,而不需要增加任何硬件资源。因此,如果数据库中存在没有正确索引的表,则可以考虑添加索引以提高查询性能。
数据库分区 数据库分区是将数据库拆分为若干个部分,每个部分可以单独管理和优化。这样做可以减轻数据库服务器的负载压力,并提高整体查询性能。在MySQL中,可以使用分区表来实现数据库分区。
数据库缓存 数据库缓存是将数据库中经常访问的数据存储在内存中,以加快对这些数据的访问速度。在MySQL中,可以使用缓存机制来提高查询性能和响应速度。
数据库分布式存储 数据库分布式存储是将数据分散在多个物理服务器上,每个服务器可以管理自己的一部分数据。这样做可以增加数据库的可扩展性和容错性,同时也可以提高整体查询性能。在MySQL中,可以使用分布式数据库系统(如Hadoop或Cassandra)来实现数据库分布式存储。
数据库集群 数据库集群是将多台服务器连接在一起,形成一个逻辑单元来处理数据库请求。这样做可以提高整体查询性能、提高可用性和容错性等方面的特性。在MySQL中,可以使用MySQL Cluster或Percona XtraDB Cluster等解决方案来实现数据库集群。
数据库优化 最后,如果以上所有方法都无法解决问题,则可以考虑进行数据库优化。数据库优化是通过对数据库结构、索引、查询语句等方面进行调整,以提高整体查询性能和响应速度。数据库优化需要一定的专业知识和经验,因此建议在执行之前寻求专业人士的帮助。
总之,当MySQL表的数据量达到1亿多条时,可以采取多种方法来提高数据库的性能和可扩展性。除了分库分表外,还可以尝试数据清理、索引优化、数据库缓存、数据库分区、数据库分布式存储、数据库集群等解决方案,以满足不同的需求和场景。
数据库知识对于数据分析工作至关重要,其中 SQL 更是数据获取与处理的关键技能。如果你想进一步提升自己在数据分析领域的能力,学会灵活运用 SQL 进行数据挖掘与分析,那么强烈推荐你学习《SQL 数据分析极简入门》
学习入口:https://edu.cda.cn/goods/show/3412?targetId=5695&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10