京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Pandas是一个广泛使用的Python库,用于数据分析和处理。Pandas中的核心数据结构是DataFrame,这是一个表格形式的数据结构,类似于Excel表格或SQL表。DataFrame具有许多功能,例如数据排序、过滤、统计和聚合等。
在DataFrame中,我们通常需要从单元格中获取值以执行特定操作。在本文中,我们将讨论如何从Pandas DataFrame单元格获取值。
一、通过行列索引器获取值
Pandas支持使用行和列索引器来获取单个单元格的值。以下是如何使用行列索引器来获取DataFrame中特定单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 从第二行第一列(0-based)的单元格获取值
value = df.iloc[1, 0]
print(value)
上述代码创建了一个包含三列数据的简单DataFrame对象,其中包含“姓名”、“年龄”和“性别”列。然后,我们使用iloc函数来获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,使用print函数打印单元格的值。
二、使用at和iat方法获取单元格值
Pandas还提供了名为at和iat的两种方法,用于在DataFrame中获取单个值。这些方法比使用行列索引器更快,因为它们没有必要遍历整个DataFrame。
在使用at和iat方法时,您需要提供行和列的位置索引。以下是使用at和iat方法从DataFrame中获取值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'at'方法获取第二行第一列(0-based)的单元格值
value1 = df.at[1, '姓名']
print(value1)
# 使用'iat'方法获取第二行第一列(0-based)的单元格值
value2 = df.iat[1, 0]
print(value2)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们使用at函数和iat函数分别获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,我们使用print函数打印单元格的值。
三、使用loc和iloc方法获取多个单元格的值
有时,您可能需要从Pandas DataFrame中获取多个单元格的值。在这种情况下,您可以使用loc和iloc方法,这两种方法都可以用于选择行和列的子集。以下是如何使用loc和iloc方法从DataFrame中获取多个单元格值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'loc'方法获取第一行至第二行,"姓名"至"年龄"列的所有单元格值
values1 = df.loc[0:1, '姓名':'年龄']
print(values1)
# 使用'iloc'方法获取第一行至第二行,第一列至第二列(0-based)的所有单元格值
values2 = df.iloc[0:2, 0:2]
print(values2)
上述代码中,我们首先创建了一个包
含三列数据的简单DataFrame对象。然后,我们使用loc方法和iloc方法分别获取第一行至第二行、"姓名"至"年龄"列的所有单元格值和第一行至第二行、第一列至第二列(0-based)的所有单元格值,并将它们存储到变量中。最后,我们使用print函数打印多个单元格的值。
四、使用apply方法获取单元格值
Pandas还提供了一个名为apply的方法,可以应用自定义函数来对DataFrame进行操作。您可以使用apply方法来获取每个单元格的值,并将其传递给自定义函数进行处理。例如,以下是如何使用apply方法从DataFrame中获取单个单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 定义一个函数,用于获取DataFrame中某个单元格的值
def get_value(row, col):
return row[col]
# 使用'apply'方法获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理
value = df.apply(lambda x: get_value(x, 0), axis=1).iloc[1]
print(value)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们定义了一个自定义函数get_value,用于获取DataFrame中某个单元格的值。接下来,我们使用apply方法从DataFrame中获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理。最后,我们使用iloc函数和行索引器来选择返回值列表中的第二个元素,并将其存储到变量中。最终,我们使用print函数打印单元格的值。
总结
在本文中,我们讨论了如何从Pandas DataFrame单元格中获取值。我们介绍了使用行列索引器、at和iat方法、loc和iloc方法以及apply方法来获取单个单元格或多个单元格的值的示例代码。这些技术可以帮助您更有效地处理和操作Pandas DataFrame数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01