
Pandas是一个广泛使用的Python库,用于数据分析和处理。Pandas中的核心数据结构是DataFrame,这是一个表格形式的数据结构,类似于Excel表格或SQL表。DataFrame具有许多功能,例如数据排序、过滤、统计和聚合等。
在DataFrame中,我们通常需要从单元格中获取值以执行特定操作。在本文中,我们将讨论如何从Pandas DataFrame单元格获取值。
一、通过行列索引器获取值
Pandas支持使用行和列索引器来获取单个单元格的值。以下是如何使用行列索引器来获取DataFrame中特定单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 从第二行第一列(0-based)的单元格获取值
value = df.iloc[1, 0]
print(value)
上述代码创建了一个包含三列数据的简单DataFrame对象,其中包含“姓名”、“年龄”和“性别”列。然后,我们使用iloc
函数来获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,使用print
函数打印单元格的值。
二、使用at和iat方法获取单元格值
Pandas还提供了名为at
和iat
的两种方法,用于在DataFrame中获取单个值。这些方法比使用行列索引器更快,因为它们没有必要遍历整个DataFrame。
在使用at
和iat
方法时,您需要提供行和列的位置索引。以下是使用at
和iat
方法从DataFrame中获取值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'at'方法获取第二行第一列(0-based)的单元格值
value1 = df.at[1, '姓名']
print(value1)
# 使用'iat'方法获取第二行第一列(0-based)的单元格值
value2 = df.iat[1, 0]
print(value2)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们使用at
函数和iat
函数分别获取第二行第一列(0-based)的单元格值,并将其存储到变量中。最后,我们使用print
函数打印单元格的值。
三、使用loc和iloc方法获取多个单元格的值
有时,您可能需要从Pandas DataFrame中获取多个单元格的值。在这种情况下,您可以使用loc
和iloc
方法,这两种方法都可以用于选择行和列的子集。以下是如何使用loc
和iloc
方法从DataFrame中获取多个单元格值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 使用'loc'方法获取第一行至第二行,"姓名"至"年龄"列的所有单元格值
values1 = df.loc[0:1, '姓名':'年龄']
print(values1)
# 使用'iloc'方法获取第一行至第二行,第一列至第二列(0-based)的所有单元格值
values2 = df.iloc[0:2, 0:2]
print(values2)
上述代码中,我们首先创建了一个包
含三列数据的简单DataFrame对象。然后,我们使用loc
方法和iloc
方法分别获取第一行至第二行、"姓名"至"年龄"列的所有单元格值和第一行至第二行、第一列至第二列(0-based)的所有单元格值,并将它们存储到变量中。最后,我们使用print
函数打印多个单元格的值。
四、使用apply方法获取单元格值
Pandas还提供了一个名为apply
的方法,可以应用自定义函数来对DataFrame进行操作。您可以使用apply
方法来获取每个单元格的值,并将其传递给自定义函数进行处理。例如,以下是如何使用apply
方法从DataFrame中获取单个单元格的值的示例代码:
import pandas as pd
# 创建一个新的DataFrame对象
data = {'姓名': ['John', 'Mike', 'Sarah'],
'年龄': [25, 30, 27],
'性别': ['男', '男', '女']}
df = pd.DataFrame(data)
# 定义一个函数,用于获取DataFrame中某个单元格的值
def get_value(row, col):
return row[col]
# 使用'apply'方法获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理
value = df.apply(lambda x: get_value(x, 0), axis=1).iloc[1]
print(value)
上述代码中,我们首先创建了一个包含三列数据的简单DataFrame对象。然后,我们定义了一个自定义函数get_value
,用于获取DataFrame中某个单元格的值。接下来,我们使用apply
方法从DataFrame中获取第二行第一列(0-based)的单元格值,并将其传递给自定义函数进行处理。最后,我们使用iloc
函数和行索引器来选择返回值列表中的第二个元素,并将其存储到变量中。最终,我们使用print
函数打印单元格的值。
总结
在本文中,我们讨论了如何从Pandas DataFrame单元格中获取值。我们介绍了使用行列索引器、at
和iat
方法、loc
和iloc
方法以及apply
方法来获取单个单元格或多个单元格的值的示例代码。这些技术可以帮助您更有效地处理和操作Pandas DataFrame数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23