
作为一名大型语言模型,我的目标是提供简明扼要的答案。实际上,from bs4 import BeautifulSoup和import bs4都是可以使用的方式,但它们之间有一些微小的差别。
首先,让我们回顾一下Python中导入模块的两种方式:使用import语句导入整个模块,或使用from ... import ...语句导入模块的特定部分。从这个角度来看,bs4模块本身没有任何特殊的情况,所以我们可以使用这两种方式来导入它。
但是,当我们考虑到BeautifulSoup类时,我们可以看到在使用from语句的情况下,我们可以直接使用类名来创建一个新的对象:
from bs4 import BeautifulSoup
soup = BeautifulSoup('
Hello World!
', 'html.parser')
与此相反,如果我们使用import语句,则需要先引用bs4模块,然后使用点符号来访问其中的类:
import bs4
soup = bs4.BeautifulSoup('
Hello World!
', 'html.parser')
那么,为什么有人喜欢使用from语句而不是import语句呢?其中的原因是代码的可读性和易用性。
当我们使用from语句时,我们可以在代码中直接使用类名,而无需在其前面添加模块名。这样做可以使代码更简洁、易读和直观,因为我们可以立即知道用到的类是哪个模块中的:
from bs4 import BeautifulSoup
soup = BeautifulSoup('
Hello World!
', 'html.parser')
另一方面,如果我们使用import语句,我们需要在每次使用类时都添加模块名。这会导致代码变得更冗长和难读,因为我们需要花费更多的时间来查看代码并找出用到的类属于哪个模块:
import bs4
soup = bs4.BeautifulSoup('
Hello World!
', 'html.parser')
此外,使用from语句还可以防止命名空间污染。这是由于Python允许不同的模块定义具有相同名称的变量和函数。如果我们使用import语句并且我们的程序中存在其他与bs4模块中定义的变量或函数相同的名称,则可能会导致意想不到的结果。但如果我们使用from语句,则只导入了指定的类名,而不是整个模块,因此可以避免这种情况:
from math import sqrt print(sqrt(4)) # 2.0 # ... def sqrt(x): return x * x print(sqrt(4)) # 16 # ... import math print(math.sqrt(4)) # 2.0 # ... print(sqrt(4)) # 16
最后,还有一些人认为使用from语句可以提高代码的执行速度。然而,这种差异在实践中通常是微不足道的,并且取决于程序的具体情况。
总之,虽然使用import bs4和from bs4 import BeautifulSoup都是可行的方式,但使用from语句通常更易读、易用、安全和优雅。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30