京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS(统计软件包)是一种流行的统计分析工具,它可以用来计算李克特量表的得分。李克特量表是一种常用的测量问卷调查中心态度和信念的工具。在这篇文章中,我们将讨论如何使用SPSS计算李克特量表的得分以及一些操作技巧。
首先,在SPSS中,需要创建一个变量来存储每个问题的得分。假设我们有一个由5个问题组成的李克特量表,每个问题有五个选项(通常被标记为“强烈同意”,“同意”,“中立”,“不同意”和“强烈不同意”)。那么我们需要创建5个变量,每个变量对应于一个问题的得分。例如,我们可以创建名为Q1、Q2、Q3、Q4和Q5的变量来保存第1到第5个问题的得分。
接下来,需要计算每个样本基于其回答的问题得分。对于每个问题,可以将每个选项分配一个得分(例如,“强烈同意”得5分,“同意”得4分,“中立”得3分,“不同意”得2分,“强烈不同意”得1分),然后将所选选项的得分相加,并将其记录为该样本的得分。例如,如果一个样本对于第1个问题选择了“强烈同意”,那么它将获得5分。如果它对于第2个问题选择了“不同意”,则它将获得2分。
一旦每个样本的得分计算出来,就可以计算每个样本的总分。总分是所有问题得分的总和。例如,如果一个样本在五个问题中分别得到了5分、4分、3分、2分和1分,则它的总分将是15分。
最后,可以使用SPSS进行数据分析。例如,可以计算每个样本的平均得分、标准差等统计量。还可以使用t检验或方差分析等方法比较不同组之间的李克特量表得分。
值得注意的是,在计算李克特量表得分时,必须确保所有问卷调查者都理解问题,并且回答问题始终诚实,否则得到的结果可能无法反映真实情况。
总结:
在SPSS中计算李克特量表得分需要创建变量存储每个问题的得分,并根据回答计算每个样本的得分。然后,可以计算每个样本的总分并使用SPSS进行数据分析。然而,要注意确保问卷调查者理解问题并诚实回答,以获得可靠的结果。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17