
TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中选择并下载各种数据集。然而,在一些情况下,用户可能需要使用本地数据集进行模型训练和测试。在本文中,我们将介绍如何使用TFDS加载本地数据集。
为了加载本地数据集,我们需要做以下几个步骤:
1.准备数据集 2.创建TFDS数据集描述文件 3.使用描述文件加载数据集
首先,我们需要准备我们要使用的数据集。这通常涉及到收集、清洗和组织数据,以便可以轻松地访问数据。在本例中,我们将使用一个简单的示例数据集,其中包含数字图像和相应的标签。
该数据集的目录结构类似于以下内容:
data/ 0/ image1.png image2.png ... 1/ image1.png image2.png ... ...
在上面的目录结构中,每个数字目录代表一个唯一的标签,并包含与该标签相关联的所有图像。
接下来,我们需要创建一个TFDS数据集描述文件。该文件告诉TFDS如何读取和使用我们的本地数据集。描述文件通常是一个Python模块,其中包含有关数据集的元数据和函数,该函数将数据集加载到内存中。
在描述文件中,我们需要定义以下元数据:
1.名称:数据集的名称。 2.版本:数据集的版本号。 3.描述:数据集的简短描述。 4.特征:数据集的特征(例如,输入和输出的形状、数据类型等)。 5.拆分:数据集应该如何划分以进行训练、验证和测试。 6.下载URL(可选):如果数据集没有被打包成一个文件,请提供一个URL以下载数据集。
以下是一个简单的描述文件示例:
import tensorflow_datasets as tfds import os # Define the metadata for the dataset _DESCRIPTION = 'A dataset containing images of digits.' _VERSION = tfds.core.Version('1.0.0')
_NAME = 'my_dataset' def my_dataset(split): # Define the path to the data directory data_dir = os.path.join(os.getcwd(), 'data') # Define the classes classes = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] # Load the data dataset_builder = tfds.builder(_NAME)
dataset_builder.data_dir = data_dir
dataset_builder.add_images(
os.path.join(data_dir, '*/*'),
labels=classes,
) return dataset_builder.as_dataset(split=split)
在上面的代码中,我们定义了一个名为my_dataset的函数,该函数将数据集加载到内存中。我们还定义了元数据,包括数据集的名称、版本和描述,以及数据集的特征和拆分方式。
最后,我们使用tfds.builder()函数创建了一个dataset_builder对象,并使用add_images()方法将图像添加到数据集中。请注意,此处我们使用了data_dir变量来指定数据集的路径。如果您的数据集存在其他位置,则需要更改此变量的值以反映正确的路径。
使用上述描述文件,我们可以通过调用tfds.load()函数来加载本地数据集。这个函数需要传递三个参数:数据集名称、数据集拆分方式和描述文件的路径或模块。
以下是一个简单的例子:
import tensorflow_datasets as tfds # Load the data my_dataset = tfds.load(
name='my_dataset',
split='train',
data_dir='./data',
download=False,
with_info=True,
) # Print
在上面的代码中,我们使用tfds.load()函数来加载名为my_dataset的数据集,使用了train拆分并指定了数据集路径。此外,我们将with_info参数设置为True以获取有关数据集的元信息。
一旦数据集被加载到内存中,我们可以像其他TFDS数据集一样使用它进行训练或测试。
在本文中,我们介绍了如何使用TFDS加载本地数据集。首先,我们准备了数据集,并创建了一个TFDS数据集描述文件。然后,我们使用tfds.load()函数将数据集加载到内存中,并使用它来训练或测试模型。虽然这种方法可能需要更多的手动操作,但它允许用户使用自己的数据集进行机器学习,从而获得更好的控制和灵活性。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12