京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Matplotlib是Python中广泛使用的绘图库之一。它具有丰富的图形功能,可以用于绘制各种类型的图表,包括线条图、散点图、饼图、柱状图和热度图(heatmap)等。
热度图是一种用颜色来表示数据值大小的二维图表。通常,热度图用于可视化矩阵或表格式数据,并以不同的颜色来区分不同数值的数据。在本文中,我们将介绍如何使用matplotlib制作热度图。
首先,我们需要准备一个数据集来绘制热度图。这里我们将使用numpy包生成一个随机的 $ 10 times 10 $ 的矩阵来模拟一个数据集:
import numpy as np
data = np.random.rand(10, 10)
生成的 data 矩阵如下所示:
array([[0.82028575, 0.76881294, 0.71971194, 0.30491486, 0.67111979,
0.17771597, 0.80438331, 0.27302774, 0.18129643, 0.63314806],
[0.77143625, 0.63551487, 0.56306356, 0.41241424, 0.47234638,
0.30451328, 0.65190823, 0.47868446, 0.03420709, 0.39056214],
[0.88830154, 0.0510874 , 0.04667507, 0.63655448, 0.1009649 ,
0.53011341, 0.88860116, 0.8072012 , 0.2627727 , 0.16129027],
[0.03957677, 0.88986948, 0.29828759, 0.34845264, 0.07125663,
0.85638637, 0.08063718, 0.65769739, 0.41561651, 0.82219976],
[0.01306113, 0.02081601, 0.00762399, 0.52039123, 0.36600046,
0.24940888, 0.21817512, 0.94152895, 0.14410661, 0.5584188 ],
[0.18524447, 0.86325457, 0.70310962, 0.17384236, 0.56810572,
0.05814711, 0.14610126, 0.76581545, 0.36524594, 0.0123577 ],
[0.69838845, 0.54777405, 0.51271685, 0.74905936, 0.04087629,
0.60057023, 0.27027469, 0.7392686 , 0.04315166, 0.09859514],
[0.79271592, 0.69936978, 0.17137361, 0.63954807, 0.19399017,
0.38978258, 0.3345555 , 0.33223096, 0.03575185, 0.527903 ],
[0.20489367, 0.00811152, 0.35635863, 0.67832791, 0.0613843 ,
0.70448221, 0.85365584, 0.88137019, 0.14431136, 0.59657908],
[0.28042776, 0.765406 , 0.53737002, 0.89526902, 0.61241154,
0.2861603 , 0.69044175, 0.11878924, 0.75902697, 0.28845139]])
接下来
,我们可以使用matplotlib.pyplot.imshow()函数来绘制热度图。此函数接受一个二维数组作为输入,并将其以颜色编码的形式显示出来。
import matplotlib.pyplot as plt
plt.imshow(data)
plt.show()
执行上述代码后,会生成一个如下所示的热度图:

在热度图中,每个单元格的颜色表示该单元格对应的值大小。默认情况下,imshow()会根据数据范围自动选择颜色映射(colormap)。
我们可以通过设置cmap参数指定不同的颜色映射。常用的颜色映射包括'viridis'、'plasma'和'magma'等。例如,如果使用'magma'颜色映射,则可以通过以下方式进行设置:
plt.imshow(data, cmap='magma')
plt.show()
运行上述代码会生成以下热度图:

通常,在绘制热度图时,我们可能需要添加行列标签以更好地解释数据。这可以通过设置xticks和yticks参数来完成。我们可以在imshow()函数之前添加以下两行代码来设置行列标签:
plt.xticks(range(10), ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
plt.yticks(range(10), ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
上述代码将行列标签分别设置为字母'a'到'j'和大写字母'A'到'J'。然后再次运行imshow()函数,就可以得到带有行列标签的热度图:

最后,我们可以通过添加一个颜色刻度表来说明热度图中每种颜色代表的数据值范围。这可以通过使用colorbar()函数来完成。
plt.colorbar()
plt.show()
上述代码使热度图显示一个颜色刻度表,其中最小值为0.0,最大值为1.0。

本文介绍了如何使用matplotlib制作热度图。我们首先准备了一个随机的 $ 10 times 10 $ 的数据集,然后使用imshow()函数绘制了热度图,设置了行列标签和颜色映射,并添加了一个颜色刻度表以说明颜色代表的数据值范围。
热度图是一种可视化工具,可用于探索数据集中的模式和趋势,或者比较不同数据集之间的差异。使用matplotlib绘制热度图非常简单且灵活,可以根据需求自由调整样式和布局,进而提高数据可视化的效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11