京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由解决方案架构师和数据工程师Mohammed M Jubapu撰写
数据工程是当今市场上最受欢迎的工作之一。数据无处不在,被认为是新时代的石油。企业从不同的来源产生大量的数据,数据工程师的任务就是组织数据信息的收集、处理和存储。然而,要成为一名数据工程师,你需要具备一些优秀的技能,如数据库、大数据、ETL和数据仓库、云计算以及编程语言。但问题来了,你是想拥有所有这些技能,还是体验过使用所有工具?这是最大的困境,特别是在有各种工具可以完成任务的技术中。
好吧,为了简化这一点,让我们喝一杯,直接进入数据工程就业市场的最新技能集观察,这肯定会给你现有的职业生涯增添动力,或者帮助你开始你的数据工程之旅。
是的,编程语言是数据工程的必备技能。大多数职位说明要求至少精通一种编程语言。这些语言是编写ETL或数据管道框架所必需的。通用编程语言是掌握数据工程和管道所需的核心编程技能。其中,JavaandScalaare用于在Hadoop上编写MapReduce作业;Pythonis是数据分析和管道的流行选择,而Rubyy也是一个流行的应用程序粘合剂。
蟒蛇!蟒蛇!蟒蛇!是的,大约70%的工作概要要求具备Python技能,其次是SQL、Java、Scala和其他编程技能,如R、.NET、Perl、Shell脚本等。
数据处理是将数据收集和操作成可用的和所需的形式。Apache Spark在数据处理层中名列前茅,其次是AWS Lambda、Elasticsearch、MapReduce、Oozie、Pig、AWS EMR等。Apache Spark是一个强大的开放源码框架,以非常快的速度提供交互式处理、实时流处理、批处理和内存处理、标准接口和易用性。
对于任何需要分析或处理的数据,首先需要将其收集或摄取到数据管道中。Rest API是用于此目的的常用工具,其次是Sqoop、Nifi、Azure Data Factory、Flume、Hue等。
数据缓冲是数据工程框架中的一个关键部分,当数据从一个地方移动到另一个地方时,需要临时存储数据以满足大量数据的需求。Apache Kafka是一个常用的分布式数据存储,为实时获取和处理流数据进行了优化。流数据是由数以千计的数据源连续生成的数据,这些数据源通常同时发送数据记录。流媒体平台需要处理这种不断涌入的数据,并按顺序和增量地处理这些数据。这一类的其他工具有Kinesis、Redis Cache、GCP pub/sub等。
数据需要存储以进行处理、分析或可视化,以产生有价值的见解。数据存储可以采用数据仓库、Hadoop、数据库(包括RDBMS和NoSQL)、数据集市等形式。SQL技能最多,其次是Hive、AWS Redshift、MongoDB、AWS S3、Cassandra、GCP BigQuery等。
数据可视化是以图形、图表或其他可视化格式表示数据或信息。它通信数据与图像的关系。Tableau和PowerBI领先于SAP Business Objects、Qlik、SPSS、QuickSight、MicroStrategy等。
有不同的云平台或基于内部的平台,可以利用它们来处理不同的数据工程工具集。列出的典型有Hadoop、谷歌云平台、AWS、Azure和Apprenda。
嗯,一个人不可能是一个大师或经验丰富的所有技能和工具,它绝对不是强制性的拥有所有这些技能。但通常要求在每个数据管道框架类别中至少拥有一个,如用于云平台的GCP、用于开发的Python、用于处理的Apache Spark、用于数据收集的Rest API、用于数据缓冲的Apache Kafka、用于数据存储的Hive和用于数据可视化的PowerBI。
学习,获得技能,提升你的事业!祝你好运&快乐的数据工程!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04