京公网安备 11010802034615号
经营许可证编号:京B2-20210330
由解决方案架构师和数据工程师Mohammed M Jubapu撰写
数据工程是当今市场上最受欢迎的工作之一。数据无处不在,被认为是新时代的石油。企业从不同的来源产生大量的数据,数据工程师的任务就是组织数据信息的收集、处理和存储。然而,要成为一名数据工程师,你需要具备一些优秀的技能,如数据库、大数据、ETL和数据仓库、云计算以及编程语言。但问题来了,你是想拥有所有这些技能,还是体验过使用所有工具?这是最大的困境,特别是在有各种工具可以完成任务的技术中。
好吧,为了简化这一点,让我们喝一杯,直接进入数据工程就业市场的最新技能集观察,这肯定会给你现有的职业生涯增添动力,或者帮助你开始你的数据工程之旅。
是的,编程语言是数据工程的必备技能。大多数职位说明要求至少精通一种编程语言。这些语言是编写ETL或数据管道框架所必需的。通用编程语言是掌握数据工程和管道所需的核心编程技能。其中,JavaandScalaare用于在Hadoop上编写MapReduce作业;Pythonis是数据分析和管道的流行选择,而Rubyy也是一个流行的应用程序粘合剂。
蟒蛇!蟒蛇!蟒蛇!是的,大约70%的工作概要要求具备Python技能,其次是SQL、Java、Scala和其他编程技能,如R、.NET、Perl、Shell脚本等。
数据处理是将数据收集和操作成可用的和所需的形式。Apache Spark在数据处理层中名列前茅,其次是AWS Lambda、Elasticsearch、MapReduce、Oozie、Pig、AWS EMR等。Apache Spark是一个强大的开放源码框架,以非常快的速度提供交互式处理、实时流处理、批处理和内存处理、标准接口和易用性。
对于任何需要分析或处理的数据,首先需要将其收集或摄取到数据管道中。Rest API是用于此目的的常用工具,其次是Sqoop、Nifi、Azure Data Factory、Flume、Hue等。
数据缓冲是数据工程框架中的一个关键部分,当数据从一个地方移动到另一个地方时,需要临时存储数据以满足大量数据的需求。Apache Kafka是一个常用的分布式数据存储,为实时获取和处理流数据进行了优化。流数据是由数以千计的数据源连续生成的数据,这些数据源通常同时发送数据记录。流媒体平台需要处理这种不断涌入的数据,并按顺序和增量地处理这些数据。这一类的其他工具有Kinesis、Redis Cache、GCP pub/sub等。
数据需要存储以进行处理、分析或可视化,以产生有价值的见解。数据存储可以采用数据仓库、Hadoop、数据库(包括RDBMS和NoSQL)、数据集市等形式。SQL技能最多,其次是Hive、AWS Redshift、MongoDB、AWS S3、Cassandra、GCP BigQuery等。
数据可视化是以图形、图表或其他可视化格式表示数据或信息。它通信数据与图像的关系。Tableau和PowerBI领先于SAP Business Objects、Qlik、SPSS、QuickSight、MicroStrategy等。
有不同的云平台或基于内部的平台,可以利用它们来处理不同的数据工程工具集。列出的典型有Hadoop、谷歌云平台、AWS、Azure和Apprenda。
嗯,一个人不可能是一个大师或经验丰富的所有技能和工具,它绝对不是强制性的拥有所有这些技能。但通常要求在每个数据管道框架类别中至少拥有一个,如用于云平台的GCP、用于开发的Python、用于处理的Apache Spark、用于数据收集的Rest API、用于数据缓冲的Apache Kafka、用于数据存储的Hive和用于数据可视化的PowerBI。
学习,获得技能,提升你的事业!祝你好运&快乐的数据工程!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26